MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcmpblnr Structured version   Visualization version   Unicode version

Theorem addcmpblnr 9890
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcmpblnr  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. ) )

Proof of Theorem addcmpblnr
StepHypRef Expression
1 oveq12 6659 . 2  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( A  +P.  D
)  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R ) ) )
2 addclpr 9840 . . . . . . . 8  |-  ( ( A  e.  P.  /\  F  e.  P. )  ->  ( A  +P.  F
)  e.  P. )
3 addclpr 9840 . . . . . . . 8  |-  ( ( B  e.  P.  /\  G  e.  P. )  ->  ( B  +P.  G
)  e.  P. )
42, 3anim12i 590 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  F  e.  P. )  /\  ( B  e.  P.  /\  G  e.  P. )
)  ->  ( ( A  +P.  F )  e. 
P.  /\  ( B  +P.  G )  e.  P. ) )
54an4s 869 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( F  e.  P.  /\  G  e.  P. )
)  ->  ( ( A  +P.  F )  e. 
P.  /\  ( B  +P.  G )  e.  P. ) )
6 addclpr 9840 . . . . . . . 8  |-  ( ( C  e.  P.  /\  R  e.  P. )  ->  ( C  +P.  R
)  e.  P. )
7 addclpr 9840 . . . . . . . 8  |-  ( ( D  e.  P.  /\  S  e.  P. )  ->  ( D  +P.  S
)  e.  P. )
86, 7anim12i 590 . . . . . . 7  |-  ( ( ( C  e.  P.  /\  R  e.  P. )  /\  ( D  e.  P.  /\  S  e.  P. )
)  ->  ( ( C  +P.  R )  e. 
P.  /\  ( D  +P.  S )  e.  P. ) )
98an4s 869 . . . . . 6  |-  ( ( ( C  e.  P.  /\  D  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. )
)  ->  ( ( C  +P.  R )  e. 
P.  /\  ( D  +P.  S )  e.  P. ) )
105, 9anim12i 590 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( F  e.  P.  /\  G  e.  P. ) )  /\  ( ( C  e. 
P.  /\  D  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e. 
P. )  /\  (
( C  +P.  R
)  e.  P.  /\  ( D  +P.  S )  e.  P. ) ) )
1110an4s 869 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e. 
P. )  /\  (
( C  +P.  R
)  e.  P.  /\  ( D  +P.  S )  e.  P. ) ) )
12 enrbreq 9885 . . . 4  |-  ( ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e.  P. )  /\  ( ( C  +P.  R )  e.  P.  /\  ( D  +P.  S )  e.  P. ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R
) ) ) )
1311, 12syl 17 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R
) ) ) )
14 addcompr 9843 . . . . . . . 8  |-  ( F  +P.  D )  =  ( D  +P.  F
)
1514oveq1i 6660 . . . . . . 7  |-  ( ( F  +P.  D )  +P.  S )  =  ( ( D  +P.  F )  +P.  S )
16 addasspr 9844 . . . . . . 7  |-  ( ( F  +P.  D )  +P.  S )  =  ( F  +P.  ( D  +P.  S ) )
17 addasspr 9844 . . . . . . 7  |-  ( ( D  +P.  F )  +P.  S )  =  ( D  +P.  ( F  +P.  S ) )
1815, 16, 173eqtr3i 2652 . . . . . 6  |-  ( F  +P.  ( D  +P.  S ) )  =  ( D  +P.  ( F  +P.  S ) )
1918oveq2i 6661 . . . . 5  |-  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) )
20 addasspr 9844 . . . . 5  |-  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) )
21 addasspr 9844 . . . . 5  |-  ( ( A  +P.  D )  +P.  ( F  +P.  S ) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) )
2219, 20, 213eqtr4i 2654 . . . 4  |-  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( A  +P.  D
)  +P.  ( F  +P.  S ) )
23 addcompr 9843 . . . . . . . 8  |-  ( G  +P.  C )  =  ( C  +P.  G
)
2423oveq1i 6660 . . . . . . 7  |-  ( ( G  +P.  C )  +P.  R )  =  ( ( C  +P.  G )  +P.  R )
25 addasspr 9844 . . . . . . 7  |-  ( ( G  +P.  C )  +P.  R )  =  ( G  +P.  ( C  +P.  R ) )
26 addasspr 9844 . . . . . . 7  |-  ( ( C  +P.  G )  +P.  R )  =  ( C  +P.  ( G  +P.  R ) )
2724, 25, 263eqtr3i 2652 . . . . . 6  |-  ( G  +P.  ( C  +P.  R ) )  =  ( C  +P.  ( G  +P.  R ) )
2827oveq2i 6661 . . . . 5  |-  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) )
29 addasspr 9844 . . . . 5  |-  ( ( B  +P.  G )  +P.  ( C  +P.  R ) )  =  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) )
30 addasspr 9844 . . . . 5  |-  ( ( B  +P.  C )  +P.  ( G  +P.  R ) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) )
3128, 29, 303eqtr4i 2654 . . . 4  |-  ( ( B  +P.  G )  +P.  ( C  +P.  R ) )  =  ( ( B  +P.  C
)  +P.  ( G  +P.  R ) )
3222, 31eqeq12i 2636 . . 3  |-  ( ( ( A  +P.  F
)  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R ) )  <-> 
( ( A  +P.  D )  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R
) ) )
3313, 32syl6bb 276 . 2  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  D )  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R
) ) ) )
341, 33syl5ibr 236 1  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653  (class class class)co 6650   P.cnp 9681    +P. cpp 9683    ~R cer 9686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-enr 9877
This theorem is referenced by:  addsrmo  9894
  Copyright terms: Public domain W3C validator