MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephdom Structured version   Visualization version   Unicode version

Theorem alephdom 8904
Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.)
Assertion
Ref Expression
alephdom  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  (
aleph `  A )  ~<_  (
aleph `  B ) ) )

Proof of Theorem alephdom
StepHypRef Expression
1 onsseleq 5765 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B )
) )
2 alephord 8898 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  (
aleph `  A )  ~< 
( aleph `  B )
) )
3 sdomdom 7983 . . . . 5  |-  ( (
aleph `  A )  ~< 
( aleph `  B )  ->  ( aleph `  A )  ~<_  ( aleph `  B )
)
42, 3syl6bi 243 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  ( aleph `  A )  ~<_  ( aleph `  B )
) )
5 fvex 6201 . . . . . . 7  |-  ( aleph `  A )  e.  _V
6 fveq2 6191 . . . . . . 7  |-  ( A  =  B  ->  ( aleph `  A )  =  ( aleph `  B )
)
7 eqeng 7989 . . . . . . 7  |-  ( (
aleph `  A )  e. 
_V  ->  ( ( aleph `  A )  =  (
aleph `  B )  -> 
( aleph `  A )  ~~  ( aleph `  B )
) )
85, 6, 7mpsyl 68 . . . . . 6  |-  ( A  =  B  ->  ( aleph `  A )  ~~  ( aleph `  B )
)
98a1i 11 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  ->  ( aleph `  A
)  ~~  ( aleph `  B ) ) )
10 endom 7982 . . . . 5  |-  ( (
aleph `  A )  ~~  ( aleph `  B )  ->  ( aleph `  A )  ~<_  ( aleph `  B )
)
119, 10syl6 35 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  ->  ( aleph `  A
)  ~<_  ( aleph `  B
) ) )
124, 11jaod 395 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  e.  B  \/  A  =  B )  ->  ( aleph `  A )  ~<_  (
aleph `  B ) ) )
131, 12sylbid 230 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  ->  ( aleph `  A )  ~<_  ( aleph `  B )
) )
14 eloni 5733 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
15 eloni 5733 . . . . . 6  |-  ( A  e.  On  ->  Ord  A )
16 ordtri2or 5822 . . . . . 6  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  e.  A  \/  A  C_  B ) )
1714, 15, 16syl2anr 495 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  e.  A  \/  A  C_  B ) )
1817ord 392 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  B  e.  A  ->  A  C_  B
) )
1918con1d 139 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  C_  B  ->  B  e.  A
) )
20 alephord 8898 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  e.  A  <->  (
aleph `  B )  ~< 
( aleph `  A )
) )
2120ancoms 469 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  e.  A  <->  (
aleph `  B )  ~< 
( aleph `  A )
) )
22 sdomnen 7984 . . . . 5  |-  ( (
aleph `  B )  ~< 
( aleph `  A )  ->  -.  ( aleph `  B
)  ~~  ( aleph `  A ) )
23 sdomdom 7983 . . . . . 6  |-  ( (
aleph `  B )  ~< 
( aleph `  A )  ->  ( aleph `  B )  ~<_  ( aleph `  A )
)
24 sbth 8080 . . . . . . 7  |-  ( ( ( aleph `  B )  ~<_  ( aleph `  A )  /\  ( aleph `  A )  ~<_  ( aleph `  B )
)  ->  ( aleph `  B )  ~~  ( aleph `  A ) )
2524ex 450 . . . . . 6  |-  ( (
aleph `  B )  ~<_  (
aleph `  A )  -> 
( ( aleph `  A
)  ~<_  ( aleph `  B
)  ->  ( aleph `  B )  ~~  ( aleph `  A ) ) )
2623, 25syl 17 . . . . 5  |-  ( (
aleph `  B )  ~< 
( aleph `  A )  ->  ( ( aleph `  A
)  ~<_  ( aleph `  B
)  ->  ( aleph `  B )  ~~  ( aleph `  A ) ) )
2722, 26mtod 189 . . . 4  |-  ( (
aleph `  B )  ~< 
( aleph `  A )  ->  -.  ( aleph `  A
)  ~<_  ( aleph `  B
) )
2821, 27syl6bi 243 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  e.  A  ->  -.  ( aleph `  A
)  ~<_  ( aleph `  B
) ) )
2919, 28syld 47 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  C_  B  ->  -.  ( aleph `  A )  ~<_  ( aleph `  B ) ) )
3013, 29impcon4bid 217 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  (
aleph `  A )  ~<_  (
aleph `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   Ord word 5722   Oncon0 5723   ` cfv 5888    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator