MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc2 Structured version   Visualization version   Unicode version

Theorem alephsuc2 8903
Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 8449 function by transfinite recursion, starting from 
om. Using this theorem we could define the aleph function with  { z  e.  On  |  z  ~<_  x } in place of  |^| { z  e.  On  |  x 
~<  z } in df-aleph 8766. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephsuc2  |-  ( A  e.  On  ->  ( aleph `  suc  A )  =  { x  e.  On  |  x  ~<_  (
aleph `  A ) } )
Distinct variable group:    x, A

Proof of Theorem alephsuc2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 alephsucdom 8902 . . 3  |-  ( A  e.  On  ->  (
x  ~<_  ( aleph `  A
)  <->  x  ~<  ( aleph ` 
suc  A ) ) )
21rabbidv 3189 . 2  |-  ( A  e.  On  ->  { x  e.  On  |  x  ~<_  (
aleph `  A ) }  =  { x  e.  On  |  x  ~<  (
aleph `  suc  A ) } )
3 alephon 8892 . . . . . . 7  |-  ( aleph ` 
suc  A )  e.  On
43oneli 5835 . . . . . 6  |-  ( y  e.  ( aleph `  suc  A )  ->  y  e.  On )
5 alephcard 8893 . . . . . . . . 9  |-  ( card `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A )
6 iscard 8801 . . . . . . . . 9  |-  ( (
card `  ( aleph `  suc  A ) )  =  (
aleph `  suc  A )  <-> 
( ( aleph `  suc  A )  e.  On  /\  A. y  e.  ( aleph ` 
suc  A ) y 
~<  ( aleph `  suc  A ) ) )
75, 6mpbi 220 . . . . . . . 8  |-  ( (
aleph `  suc  A )  e.  On  /\  A. y  e.  ( aleph ` 
suc  A ) y 
~<  ( aleph `  suc  A ) )
87simpri 478 . . . . . . 7  |-  A. y  e.  ( aleph `  suc  A ) y  ~<  ( aleph ` 
suc  A )
98rspec 2931 . . . . . 6  |-  ( y  e.  ( aleph `  suc  A )  ->  y  ~<  (
aleph `  suc  A ) )
104, 9jca 554 . . . . 5  |-  ( y  e.  ( aleph `  suc  A )  ->  ( y  e.  On  /\  y  ~< 
( aleph `  suc  A ) ) )
11 sdomel 8107 . . . . . . 7  |-  ( ( y  e.  On  /\  ( aleph `  suc  A )  e.  On )  -> 
( y  ~<  ( aleph `  suc  A )  ->  y  e.  (
aleph `  suc  A ) ) )
123, 11mpan2 707 . . . . . 6  |-  ( y  e.  On  ->  (
y  ~<  ( aleph `  suc  A )  ->  y  e.  ( aleph `  suc  A ) ) )
1312imp 445 . . . . 5  |-  ( ( y  e.  On  /\  y  ~<  ( aleph `  suc  A ) )  ->  y  e.  ( aleph `  suc  A ) )
1410, 13impbii 199 . . . 4  |-  ( y  e.  ( aleph `  suc  A )  <->  ( y  e.  On  /\  y  ~< 
( aleph `  suc  A ) ) )
15 breq1 4656 . . . . 5  |-  ( x  =  y  ->  (
x  ~<  ( aleph `  suc  A )  <->  y  ~<  ( aleph `  suc  A ) ) )
1615elrab 3363 . . . 4  |-  ( y  e.  { x  e.  On  |  x  ~<  (
aleph `  suc  A ) }  <->  ( y  e.  On  /\  y  ~< 
( aleph `  suc  A ) ) )
1714, 16bitr4i 267 . . 3  |-  ( y  e.  ( aleph `  suc  A )  <->  y  e.  {
x  e.  On  |  x  ~<  ( aleph `  suc  A ) } )
1817eqriv 2619 . 2  |-  ( aleph ` 
suc  A )  =  { x  e.  On  |  x  ~<  ( aleph ` 
suc  A ) }
192, 18syl6reqr 2675 1  |-  ( A  e.  On  ->  ( aleph `  suc  A )  =  { x  e.  On  |  x  ~<_  (
aleph `  A ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   class class class wbr 4653   Oncon0 5723   suc csuc 5725   ` cfv 5888    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by:  alephsuc3  9402
  Copyright terms: Public domain W3C validator