Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem3 Structured version   Visualization version   Unicode version

Theorem aomclem3 37626
Description: Lemma for dfac11 37632. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
aomclem3.b  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
aomclem3.c  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
aomclem3.d  |-  D  = recs ( ( a  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  a ) ) ) )
aomclem3.e  |-  E  =  { <. a ,  b
>.  |  |^| ( `' D " { a } )  e.  |^| ( `' D " { b } ) }
aomclem3.on  |-  ( ph  ->  dom  z  e.  On )
aomclem3.su  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
aomclem3.we  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
aomclem3.a  |-  ( ph  ->  A  e.  On )
aomclem3.za  |-  ( ph  ->  dom  z  C_  A
)
aomclem3.y  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
Assertion
Ref Expression
aomclem3  |-  ( ph  ->  E  We  ( R1
`  dom  z )
)
Distinct variable groups:    y, z,
a, b, c, d    ph, a, b    C, a, b, c, d    D, a, b, c, d
Allowed substitution hints:    ph( y, z, c, d)    A( y, z, a, b, c, d)    B( y, z, a, b, c, d)    C( y, z)    D( y, z)    E( y, z, a, b, c, d)

Proof of Theorem aomclem3
StepHypRef Expression
1 aomclem3.d . . 3  |-  D  = recs ( ( a  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  a ) ) ) )
2 rneq 5351 . . . . . . 7  |-  ( a  =  c  ->  ran  a  =  ran  c )
32difeq2d 3728 . . . . . 6  |-  ( a  =  c  ->  (
( R1 `  dom  z )  \  ran  a )  =  ( ( R1 `  dom  z )  \  ran  c ) )
43fveq2d 6195 . . . . 5  |-  ( a  =  c  ->  ( C `  ( ( R1 `  dom  z ) 
\  ran  a )
)  =  ( C `
 ( ( R1
`  dom  z )  \  ran  c ) ) )
54cbvmptv 4750 . . . 4  |-  ( a  e.  _V  |->  ( C `
 ( ( R1
`  dom  z )  \  ran  a ) ) )  =  ( c  e.  _V  |->  ( C `
 ( ( R1
`  dom  z )  \  ran  c ) ) )
6 recseq 7470 . . . 4  |-  ( ( a  e.  _V  |->  ( C `  ( ( R1 `  dom  z
)  \  ran  a ) ) )  =  ( c  e.  _V  |->  ( C `  ( ( R1 `  dom  z
)  \  ran  c ) ) )  -> recs ( ( a  e.  _V  |->  ( C `  ( ( R1 `  dom  z
)  \  ran  a ) ) ) )  = recs ( ( c  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  c ) ) ) ) )
75, 6ax-mp 5 . . 3  |- recs ( ( a  e.  _V  |->  ( C `  ( ( R1 `  dom  z
)  \  ran  a ) ) ) )  = recs ( ( c  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  c ) ) ) )
81, 7eqtri 2644 . 2  |-  D  = recs ( ( c  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  c ) ) ) )
9 fvexd 6203 . 2  |-  ( ph  ->  ( R1 `  dom  z )  e.  _V )
10 aomclem3.b . . . 4  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
11 aomclem3.c . . . 4  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
12 aomclem3.on . . . 4  |-  ( ph  ->  dom  z  e.  On )
13 aomclem3.su . . . 4  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
14 aomclem3.we . . . 4  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
15 aomclem3.a . . . 4  |-  ( ph  ->  A  e.  On )
16 aomclem3.za . . . 4  |-  ( ph  ->  dom  z  C_  A
)
17 aomclem3.y . . . 4  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
1810, 11, 12, 13, 14, 15, 16, 17aomclem2 37625 . . 3  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  dom  z
) ( a  =/=  (/)  ->  ( C `  a )  e.  a ) )
19 neeq1 2856 . . . . 5  |-  ( a  =  d  ->  (
a  =/=  (/)  <->  d  =/=  (/) ) )
20 fveq2 6191 . . . . . 6  |-  ( a  =  d  ->  ( C `  a )  =  ( C `  d ) )
21 id 22 . . . . . 6  |-  ( a  =  d  ->  a  =  d )
2220, 21eleq12d 2695 . . . . 5  |-  ( a  =  d  ->  (
( C `  a
)  e.  a  <->  ( C `  d )  e.  d ) )
2319, 22imbi12d 334 . . . 4  |-  ( a  =  d  ->  (
( a  =/=  (/)  ->  ( C `  a )  e.  a )  <->  ( d  =/=  (/)  ->  ( C `  d )  e.  d ) ) )
2423cbvralv 3171 . . 3  |-  ( A. a  e.  ~P  ( R1 `  dom  z ) ( a  =/=  (/)  ->  ( C `  a )  e.  a )  <->  A. d  e.  ~P  ( R1 `  dom  z ) ( d  =/=  (/)  ->  ( C `  d )  e.  d ) )
2518, 24sylib 208 . 2  |-  ( ph  ->  A. d  e.  ~P  ( R1 `  dom  z
) ( d  =/=  (/)  ->  ( C `  d )  e.  d ) )
26 aomclem3.e . 2  |-  E  =  { <. a ,  b
>.  |  |^| ( `' D " { a } )  e.  |^| ( `' D " { b } ) }
278, 9, 25, 26dnwech 37618 1  |-  ( ph  ->  E  We  ( R1
`  dom  z )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   |^|cint 4475   class class class wbr 4653   {copab 4712    |-> cmpt 4729    We wwe 5072   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Oncon0 5723   suc csuc 5725   ` cfv 5888  recscrecs 7467   Fincfn 7955   supcsup 8346   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-sup 8348  df-r1 8627
This theorem is referenced by:  aomclem5  37628
  Copyright terms: Public domain W3C validator