MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem4 Structured version   Visualization version   Unicode version

Theorem cantnflem4 8589
Description: Lemma for cantnf 8590. Complete the induction step of cantnflem3 8588. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
cantnf.c  |-  ( ph  ->  C  e.  ( A  ^o  B ) )
cantnf.s  |-  ( ph  ->  C  C_  ran  ( A CNF 
B ) )
cantnf.e  |-  ( ph  -> 
(/)  e.  C )
cantnf.x  |-  X  = 
U. |^| { c  e.  On  |  C  e.  ( A  ^o  c
) }
cantnf.p  |-  P  =  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  X ) ( d  =  <. a ,  b
>.  /\  ( ( ( A  ^o  X )  .o  a )  +o  b )  =  C ) )
cantnf.y  |-  Y  =  ( 1st `  P
)
cantnf.z  |-  Z  =  ( 2nd `  P
)
Assertion
Ref Expression
cantnflem4  |-  ( ph  ->  C  e.  ran  ( A CNF  B ) )
Distinct variable groups:    w, c, x, y, z, B    a,
b, c, d, w, x, y, z, C    A, a, b, c, d, w, x, y, z    T, c    S, c, x, y, z    x, Z, y, z    ph, x, y, z    w, Y, x, y, z    X, a, b, d, w, x, y, z
Allowed substitution hints:    ph( w, a, b, c, d)    B( a, b, d)    P( x, y, z, w, a, b, c, d)    S( w, a, b, d)    T( x, y, z, w, a, b, d)    X( c)    Y( a, b, c, d)    Z( w, a, b, c, d)

Proof of Theorem cantnflem4
Dummy variables  g 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnf.s . . . 4  |-  ( ph  ->  C  C_  ran  ( A CNF 
B ) )
2 cantnfs.a . . . . . . . . 9  |-  ( ph  ->  A  e.  On )
3 cantnfs.s . . . . . . . . . . . . 13  |-  S  =  dom  ( A CNF  B
)
4 cantnfs.b . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  On )
5 oemapval.t . . . . . . . . . . . . 13  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
6 cantnf.c . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  ( A  ^o  B ) )
7 cantnf.e . . . . . . . . . . . . 13  |-  ( ph  -> 
(/)  e.  C )
83, 2, 4, 5, 6, 1, 7cantnflem2 8587 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  ( On  \  2o )  /\  C  e.  ( On  \  1o ) ) )
9 eqid 2622 . . . . . . . . . . . . . 14  |-  X  =  X
10 eqid 2622 . . . . . . . . . . . . . 14  |-  Y  =  Y
11 eqid 2622 . . . . . . . . . . . . . 14  |-  Z  =  Z
129, 10, 113pm3.2i 1239 . . . . . . . . . . . . 13  |-  ( X  =  X  /\  Y  =  Y  /\  Z  =  Z )
13 cantnf.x . . . . . . . . . . . . . 14  |-  X  = 
U. |^| { c  e.  On  |  C  e.  ( A  ^o  c
) }
14 cantnf.p . . . . . . . . . . . . . 14  |-  P  =  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  X ) ( d  =  <. a ,  b
>.  /\  ( ( ( A  ^o  X )  .o  a )  +o  b )  =  C ) )
15 cantnf.y . . . . . . . . . . . . . 14  |-  Y  =  ( 1st `  P
)
16 cantnf.z . . . . . . . . . . . . . 14  |-  Z  =  ( 2nd `  P
)
1713, 14, 15, 16oeeui 7682 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( On 
\  2o )  /\  C  e.  ( On  \  1o ) )  -> 
( ( ( X  e.  On  /\  Y  e.  ( A  \  1o )  /\  Z  e.  ( A  ^o  X ) )  /\  ( ( ( A  ^o  X
)  .o  Y )  +o  Z )  =  C )  <->  ( X  =  X  /\  Y  =  Y  /\  Z  =  Z ) ) )
1812, 17mpbiri 248 . . . . . . . . . . . 12  |-  ( ( A  e.  ( On 
\  2o )  /\  C  e.  ( On  \  1o ) )  -> 
( ( X  e.  On  /\  Y  e.  ( A  \  1o )  /\  Z  e.  ( A  ^o  X ) )  /\  ( ( ( A  ^o  X
)  .o  Y )  +o  Z )  =  C ) )
198, 18syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X  e.  On  /\  Y  e.  ( A  \  1o )  /\  Z  e.  ( A  ^o  X ) )  /\  ( ( ( A  ^o  X
)  .o  Y )  +o  Z )  =  C ) )
2019simpld 475 . . . . . . . . . 10  |-  ( ph  ->  ( X  e.  On  /\  Y  e.  ( A 
\  1o )  /\  Z  e.  ( A  ^o  X ) ) )
2120simp1d 1073 . . . . . . . . 9  |-  ( ph  ->  X  e.  On )
22 oecl 7617 . . . . . . . . 9  |-  ( ( A  e.  On  /\  X  e.  On )  ->  ( A  ^o  X
)  e.  On )
232, 21, 22syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( A  ^o  X
)  e.  On )
2420simp2d 1074 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  ( A 
\  1o ) )
2524eldifad 3586 . . . . . . . . 9  |-  ( ph  ->  Y  e.  A )
26 onelon 5748 . . . . . . . . 9  |-  ( ( A  e.  On  /\  Y  e.  A )  ->  Y  e.  On )
272, 25, 26syl2anc 693 . . . . . . . 8  |-  ( ph  ->  Y  e.  On )
28 omcl 7616 . . . . . . . 8  |-  ( ( ( A  ^o  X
)  e.  On  /\  Y  e.  On )  ->  ( ( A  ^o  X )  .o  Y
)  e.  On )
2923, 27, 28syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( A  ^o  X )  .o  Y
)  e.  On )
3020simp3d 1075 . . . . . . . 8  |-  ( ph  ->  Z  e.  ( A  ^o  X ) )
31 onelon 5748 . . . . . . . 8  |-  ( ( ( A  ^o  X
)  e.  On  /\  Z  e.  ( A  ^o  X ) )  ->  Z  e.  On )
3223, 30, 31syl2anc 693 . . . . . . 7  |-  ( ph  ->  Z  e.  On )
33 oaword1 7632 . . . . . . 7  |-  ( ( ( ( A  ^o  X )  .o  Y
)  e.  On  /\  Z  e.  On )  ->  ( ( A  ^o  X )  .o  Y
)  C_  ( (
( A  ^o  X
)  .o  Y )  +o  Z ) )
3429, 32, 33syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( A  ^o  X )  .o  Y
)  C_  ( (
( A  ^o  X
)  .o  Y )  +o  Z ) )
35 dif1o 7580 . . . . . . . . . . 11  |-  ( Y  e.  ( A  \  1o )  <->  ( Y  e.  A  /\  Y  =/=  (/) ) )
3635simprbi 480 . . . . . . . . . 10  |-  ( Y  e.  ( A  \  1o )  ->  Y  =/=  (/) )
3724, 36syl 17 . . . . . . . . 9  |-  ( ph  ->  Y  =/=  (/) )
38 on0eln0 5780 . . . . . . . . . 10  |-  ( Y  e.  On  ->  ( (/) 
e.  Y  <->  Y  =/=  (/) ) )
3927, 38syl 17 . . . . . . . . 9  |-  ( ph  ->  ( (/)  e.  Y  <->  Y  =/=  (/) ) )
4037, 39mpbird 247 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  Y )
41 omword1 7653 . . . . . . . 8  |-  ( ( ( ( A  ^o  X )  e.  On  /\  Y  e.  On )  /\  (/)  e.  Y )  ->  ( A  ^o  X )  C_  (
( A  ^o  X
)  .o  Y ) )
4223, 27, 40, 41syl21anc 1325 . . . . . . 7  |-  ( ph  ->  ( A  ^o  X
)  C_  ( ( A  ^o  X )  .o  Y ) )
4342, 30sseldd 3604 . . . . . 6  |-  ( ph  ->  Z  e.  ( ( A  ^o  X )  .o  Y ) )
4434, 43sseldd 3604 . . . . 5  |-  ( ph  ->  Z  e.  ( ( ( A  ^o  X
)  .o  Y )  +o  Z ) )
4519simprd 479 . . . . 5  |-  ( ph  ->  ( ( ( A  ^o  X )  .o  Y )  +o  Z
)  =  C )
4644, 45eleqtrd 2703 . . . 4  |-  ( ph  ->  Z  e.  C )
471, 46sseldd 3604 . . 3  |-  ( ph  ->  Z  e.  ran  ( A CNF  B ) )
483, 2, 4cantnff 8571 . . . 4  |-  ( ph  ->  ( A CNF  B ) : S --> ( A  ^o  B ) )
49 ffn 6045 . . . 4  |-  ( ( A CNF  B ) : S --> ( A  ^o  B )  ->  ( A CNF  B )  Fn  S
)
50 fvelrnb 6243 . . . 4  |-  ( ( A CNF  B )  Fn  S  ->  ( Z  e.  ran  ( A CNF  B
)  <->  E. g  e.  S  ( ( A CNF  B
) `  g )  =  Z ) )
5148, 49, 503syl 18 . . 3  |-  ( ph  ->  ( Z  e.  ran  ( A CNF  B )  <->  E. g  e.  S  ( ( A CNF  B ) `
 g )  =  Z ) )
5247, 51mpbid 222 . 2  |-  ( ph  ->  E. g  e.  S  ( ( A CNF  B
) `  g )  =  Z )
532adantr 481 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  A  e.  On )
544adantr 481 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  B  e.  On )
556adantr 481 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  C  e.  ( A  ^o  B ) )
561adantr 481 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  C  C_  ran  ( A CNF 
B ) )
577adantr 481 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  (/) 
e.  C )
58 simprl 794 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  -> 
g  e.  S )
59 simprr 796 . . 3  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  -> 
( ( A CNF  B
) `  g )  =  Z )
60 eqid 2622 . . 3  |-  ( t  e.  B  |->  if ( t  =  X ,  Y ,  ( g `  t ) ) )  =  ( t  e.  B  |->  if ( t  =  X ,  Y ,  ( g `  t ) ) )
613, 53, 54, 5, 55, 56, 57, 13, 14, 15, 16, 58, 59, 60cantnflem3 8588 . 2  |-  ( (
ph  /\  ( g  e.  S  /\  (
( A CNF  B ) `
 g )  =  Z ) )  ->  C  e.  ran  ( A CNF 
B ) )
6252, 61rexlimddv 3035 1  |-  ( ph  ->  C  e.  ran  ( A CNF  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436   |^|cint 4475   {copab 4712    |-> cmpt 4729   dom cdm 5114   ran crn 5115   Oncon0 5723   iotacio 5849    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   1oc1o 7553   2oc2o 7554    +o coa 7557    .o comu 7558    ^o coe 7559   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cantnf  8590
  Copyright terms: Public domain W3C validator