MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatopth2 Structured version   Visualization version   Unicode version

Theorem ccatopth2 13471
Description: An opth 4945-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
ccatopth2  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( ( A ++  B
)  =  ( C ++  D )  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem ccatopth2
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( ( A ++  B )  =  ( C ++  D )  ->  ( # `  ( A ++  B ) )  =  ( # `  ( C ++  D ) ) )
2 ccatlen 13360 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( # `  ( A ++  B ) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
323ad2ant1 1082 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  ( A ++  B ) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
4 simp3 1063 . . . . . . . 8  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  B )  =  ( # `  D
) )
54oveq2d 6666 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( ( # `  A
)  +  ( # `  B ) )  =  ( ( # `  A
)  +  ( # `  D ) ) )
63, 5eqtrd 2656 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  ( A ++  B ) )  =  ( ( # `  A
)  +  ( # `  D ) ) )
7 ccatlen 13360 . . . . . . 7  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( # `  ( C ++  D ) )  =  ( ( # `  C
)  +  ( # `  D ) ) )
873ad2ant2 1083 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  ( C ++  D ) )  =  ( ( # `  C
)  +  ( # `  D ) ) )
96, 8eqeq12d 2637 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( ( # `  ( A ++  B ) )  =  ( # `  ( C ++  D ) )  <->  ( ( # `
 A )  +  ( # `  D
) )  =  ( ( # `  C
)  +  ( # `  D ) ) ) )
10 simp1l 1085 . . . . . . . 8  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  ->  A  e. Word  X )
11 lencl 13324 . . . . . . . 8  |-  ( A  e. Word  X  ->  ( # `
 A )  e. 
NN0 )
1210, 11syl 17 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  A )  e.  NN0 )
1312nn0cnd 11353 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  A )  e.  CC )
14 simp2l 1087 . . . . . . . 8  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  ->  C  e. Word  X )
15 lencl 13324 . . . . . . . 8  |-  ( C  e. Word  X  ->  ( # `
 C )  e. 
NN0 )
1614, 15syl 17 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  C )  e.  NN0 )
1716nn0cnd 11353 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  C )  e.  CC )
18 simp2r 1088 . . . . . . . 8  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  ->  D  e. Word  X )
19 lencl 13324 . . . . . . . 8  |-  ( D  e. Word  X  ->  ( # `
 D )  e. 
NN0 )
2018, 19syl 17 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  D )  e.  NN0 )
2120nn0cnd 11353 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( # `  D )  e.  CC )
2213, 17, 21addcan2d 10240 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( ( ( # `  A )  +  (
# `  D )
)  =  ( (
# `  C )  +  ( # `  D
) )  <->  ( # `  A
)  =  ( # `  C ) ) )
239, 22bitrd 268 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( ( # `  ( A ++  B ) )  =  ( # `  ( C ++  D ) )  <->  ( # `  A
)  =  ( # `  C ) ) )
241, 23syl5ib 234 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( ( A ++  B
)  =  ( C ++  D )  ->  ( # `
 A )  =  ( # `  C
) ) )
25 ccatopth 13470 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A ++  B
)  =  ( C ++  D )  <->  ( A  =  C  /\  B  =  D ) ) )
2625biimpd 219 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A ++  B
)  =  ( C ++  D )  ->  ( A  =  C  /\  B  =  D )
) )
27263expia 1267 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
) )  ->  (
( # `  A )  =  ( # `  C
)  ->  ( ( A ++  B )  =  ( C ++  D )  -> 
( A  =  C  /\  B  =  D ) ) ) )
2827com23 86 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
) )  ->  (
( A ++  B )  =  ( C ++  D
)  ->  ( ( # `
 A )  =  ( # `  C
)  ->  ( A  =  C  /\  B  =  D ) ) ) )
29283adant3 1081 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( ( A ++  B
)  =  ( C ++  D )  ->  (
( # `  A )  =  ( # `  C
)  ->  ( A  =  C  /\  B  =  D ) ) ) )
3024, 29mpdd 43 . 2  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( ( A ++  B
)  =  ( C ++  D )  ->  ( A  =  C  /\  B  =  D )
) )
31 oveq12 6659 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A ++  B )  =  ( C ++  D
) )
3230, 31impbid1 215 1  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  B
)  =  ( # `  D ) )  -> 
( ( A ++  B
)  =  ( C ++  D )  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650    + caddc 9939   NN0cn0 11292   #chash 13117  Word cword 13291   ++ cconcat 13293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  ccatrcan  13473
  Copyright terms: Public domain W3C validator