MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlks Structured version   Visualization version   Unicode version

Theorem clwwlks 26879
Description: The set of closed walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Hypotheses
Ref Expression
clwwlks.v  |-  V  =  (Vtx `  G )
clwwlks.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
clwwlks  |-  (ClWWalks `  G
)  =  { w  e. Word  V  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  E ) }
Distinct variable groups:    i, G, w    w, V
Allowed substitution hints:    E( w, i)    V( i)

Proof of Theorem clwwlks
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-clwwlks 26877 . . . 4  |- ClWWalks  =  ( g  e.  _V  |->  { w  e. Word  (Vtx `  g )  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  g )  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  (Edg `  g ) ) } )
21a1i 11 . . 3  |-  ( G  e.  _V  -> ClWWalks  =  ( g  e.  _V  |->  { w  e. Word  (Vtx `  g )  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  g )  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  (Edg `  g ) ) } ) )
3 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
4 clwwlks.v . . . . . . 7  |-  V  =  (Vtx `  G )
53, 4syl6eqr 2674 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
6 wrdeq 13327 . . . . . 6  |-  ( (Vtx
`  g )  =  V  -> Word  (Vtx `  g
)  = Word  V )
75, 6syl 17 . . . . 5  |-  ( g  =  G  -> Word  (Vtx `  g )  = Word  V
)
8 fveq2 6191 . . . . . . . . 9  |-  ( g  =  G  ->  (Edg `  g )  =  (Edg
`  G ) )
9 clwwlks.e . . . . . . . . 9  |-  E  =  (Edg `  G )
108, 9syl6eqr 2674 . . . . . . . 8  |-  ( g  =  G  ->  (Edg `  g )  =  E )
1110eleq2d 2687 . . . . . . 7  |-  ( g  =  G  ->  ( { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  g )  <->  { (
w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E ) )
1211ralbidv 2986 . . . . . 6  |-  ( g  =  G  ->  ( A. i  e.  (
0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  g )  <->  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E ) )
1310eleq2d 2687 . . . . . 6  |-  ( g  =  G  ->  ( { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  (Edg `  g )  <->  { ( lastS  `  w ) ,  ( w `  0 ) }  e.  E ) )
1412, 133anbi23d 1402 . . . . 5  |-  ( g  =  G  ->  (
( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  g )  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  (Edg `  g ) )  <-> 
( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w
) ,  ( w `
 0 ) }  e.  E ) ) )
157, 14rabeqbidv 3195 . . . 4  |-  ( g  =  G  ->  { w  e. Word  (Vtx `  g )  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  g )  /\  {
( lastS  `  w ) ,  ( w `  0
) }  e.  (Edg
`  g ) ) }  =  { w  e. Word  V  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  E ) } )
1615adantl 482 . . 3  |-  ( ( G  e.  _V  /\  g  =  G )  ->  { w  e. Word  (Vtx `  g )  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  g )  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  (Edg `  g ) ) }  =  { w  e. Word  V  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  E ) } )
17 id 22 . . 3  |-  ( G  e.  _V  ->  G  e.  _V )
18 fvex 6201 . . . . . 6  |-  (Vtx `  G )  e.  _V
194, 18eqeltri 2697 . . . . 5  |-  V  e. 
_V
2019a1i 11 . . . 4  |-  ( G  e.  _V  ->  V  e.  _V )
21 wrdexg 13315 . . . 4  |-  ( V  e.  _V  -> Word  V  e. 
_V )
22 rabexg 4812 . . . 4  |-  (Word  V  e.  _V  ->  { w  e. Word  V  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  E ) }  e.  _V )
2320, 21, 223syl 18 . . 3  |-  ( G  e.  _V  ->  { w  e. Word  V  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  E ) }  e.  _V )
242, 16, 17, 23fvmptd 6288 . 2  |-  ( G  e.  _V  ->  (ClWWalks `  G )  =  {
w  e. Word  V  | 
( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w
) ,  ( w `
 0 ) }  e.  E ) } )
25 fvprc 6185 . . 3  |-  ( -.  G  e.  _V  ->  (ClWWalks `  G )  =  (/) )
26 noel 3919 . . . . . . . 8  |-  -.  {
( lastS  `  w ) ,  ( w `  0
) }  e.  (/)
27 fvprc 6185 . . . . . . . . . 10  |-  ( -.  G  e.  _V  ->  (Edg
`  G )  =  (/) )
289, 27syl5eq 2668 . . . . . . . . 9  |-  ( -.  G  e.  _V  ->  E  =  (/) )
2928eleq2d 2687 . . . . . . . 8  |-  ( -.  G  e.  _V  ->  ( { ( lastS  `  w
) ,  ( w `
 0 ) }  e.  E  <->  { ( lastS  `  w ) ,  ( w `  0 ) }  e.  (/) ) )
3026, 29mtbiri 317 . . . . . . 7  |-  ( -.  G  e.  _V  ->  -. 
{ ( lastS  `  w
) ,  ( w `
 0 ) }  e.  E )
3130adantr 481 . . . . . 6  |-  ( ( -.  G  e.  _V  /\  w  e. Word  V )  ->  -.  { ( lastS  `  w ) ,  ( w `  0 ) }  e.  E )
3231intn3an3d 1444 . . . . 5  |-  ( ( -.  G  e.  _V  /\  w  e. Word  V )  ->  -.  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  E ) )
3332ralrimiva 2966 . . . 4  |-  ( -.  G  e.  _V  ->  A. w  e. Word  V  -.  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w
) ,  ( w `
 0 ) }  e.  E ) )
34 rabeq0 3957 . . . 4  |-  ( { w  e. Word  V  | 
( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w
) ,  ( w `
 0 ) }  e.  E ) }  =  (/)  <->  A. w  e. Word  V  -.  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w
) ,  ( w `
 0 ) }  e.  E ) )
3533, 34sylibr 224 . . 3  |-  ( -.  G  e.  _V  ->  { w  e. Word  V  | 
( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w
) ,  ( w `
 0 ) }  e.  E ) }  =  (/) )
3625, 35eqtr4d 2659 . 2  |-  ( -.  G  e.  _V  ->  (ClWWalks `  G )  =  {
w  e. Word  V  | 
( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w
) ,  ( w `
 0 ) }  e.  E ) } )
3724, 36pm2.61i 176 1  |-  (ClWWalks `  G
)  =  { w  e. Word  V  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E  /\  { ( lastS  `  w ) ,  ( w ` 
0 ) }  e.  E ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200   (/)c0 3915   {cpr 4179    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292  Vtxcvtx 25874  Edgcedg 25939  ClWWalkscclwwlks 26875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-clwwlks 26877
This theorem is referenced by:  isclwwlks  26880  clwwlkssswrd  26911
  Copyright terms: Public domain W3C validator