Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colineardim1 Structured version   Visualization version   Unicode version

Theorem colineardim1 32168
Description: If  A is colinear with  B and  C, then 
A is in the same space as  B. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colineardim1  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( A  Colinear  <. B ,  C >.  ->  A  e.  ( EE `  N ) ) )

Proof of Theorem colineardim1
Dummy variables  a 
b  c  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 32146 . . 3  |-  Colinear  =  `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }
21breqi 4659 . 2  |-  ( A 
Colinear 
<. B ,  C >.  <->  A `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } <. B ,  C >. )
3 simpr1 1067 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  A  e.  V )
4 opex 4932 . . . 4  |-  <. B ,  C >.  e.  _V
5 brcnvg 5303 . . . 4  |-  ( ( A  e.  V  /\  <. B ,  C >.  e. 
_V )  ->  ( A `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } <. B ,  C >.  <->  <. B ,  C >. { <. <. b ,  c >. ,  a
>.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } A
) )
63, 4, 5sylancl 694 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( A `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } <. B ,  C >.  <->  <. B ,  C >. { <. <. b ,  c >. ,  a
>.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } A
) )
7 df-br 4654 . . . 4  |-  ( <. B ,  C >. {
<. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } A  <->  <. <. B ,  C >. ,  A >.  e.  { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } )
8 eleq1 2689 . . . . . . . . . . 11  |-  ( b  =  B  ->  (
b  e.  ( EE
`  n )  <->  B  e.  ( EE `  n ) ) )
983anbi2d 1404 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  <->  ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) ) ) )
10 opeq1 4402 . . . . . . . . . . . 12  |-  ( b  =  B  ->  <. b ,  c >.  =  <. B ,  c >. )
1110breq2d 4665 . . . . . . . . . . 11  |-  ( b  =  B  ->  (
a  Btwn  <. b ,  c >.  <->  a  Btwn  <. B , 
c >. ) )
12 breq1 4656 . . . . . . . . . . 11  |-  ( b  =  B  ->  (
b  Btwn  <. c ,  a >.  <->  B  Btwn  <. c ,  a >. )
)
13 opeq2 4403 . . . . . . . . . . . 12  |-  ( b  =  B  ->  <. a ,  b >.  =  <. a ,  B >. )
1413breq2d 4665 . . . . . . . . . . 11  |-  ( b  =  B  ->  (
c  Btwn  <. a ,  b >.  <->  c  Btwn  <. a ,  B >. ) )
1511, 12, 143orbi123d 1398 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( a  Btwn  <. b ,  c >.  \/  b  Btwn  <. c ,  a
>.  \/  c  Btwn  <. a ,  b >. )  <->  ( a  Btwn  <. B , 
c >.  \/  B  Btwn  <.
c ,  a >.  \/  c  Btwn  <. a ,  B >. ) ) )
169, 15anbi12d 747 . . . . . . . . 9  |-  ( b  =  B  ->  (
( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) )  <->  ( (
a  e.  ( EE
`  n )  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n
) )  /\  (
a  Btwn  <. B , 
c >.  \/  B  Btwn  <.
c ,  a >.  \/  c  Btwn  <. a ,  B >. ) ) ) )
1716rexbidv 3052 . . . . . . . 8  |-  ( b  =  B  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) )  <->  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  c
>.  \/  B  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  B >. ) ) ) )
18 eleq1 2689 . . . . . . . . . . 11  |-  ( c  =  C  ->  (
c  e.  ( EE
`  n )  <->  C  e.  ( EE `  n ) ) )
19183anbi3d 1405 . . . . . . . . . 10  |-  ( c  =  C  ->  (
( a  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  <->  ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) ) ) )
20 opeq2 4403 . . . . . . . . . . . 12  |-  ( c  =  C  ->  <. B , 
c >.  =  <. B ,  C >. )
2120breq2d 4665 . . . . . . . . . . 11  |-  ( c  =  C  ->  (
a  Btwn  <. B , 
c >. 
<->  a  Btwn  <. B ,  C >. ) )
22 opeq1 4402 . . . . . . . . . . . 12  |-  ( c  =  C  ->  <. c ,  a >.  =  <. C ,  a >. )
2322breq2d 4665 . . . . . . . . . . 11  |-  ( c  =  C  ->  ( B  Btwn  <. c ,  a
>. 
<->  B  Btwn  <. C , 
a >. ) )
24 breq1 4656 . . . . . . . . . . 11  |-  ( c  =  C  ->  (
c  Btwn  <. a ,  B >.  <->  C  Btwn  <. a ,  B >. ) )
2521, 23, 243orbi123d 1398 . . . . . . . . . 10  |-  ( c  =  C  ->  (
( a  Btwn  <. B , 
c >.  \/  B  Btwn  <.
c ,  a >.  \/  c  Btwn  <. a ,  B >. )  <->  ( a  Btwn  <. B ,  C >.  \/  B  Btwn  <. C , 
a >.  \/  C  Btwn  <.
a ,  B >. ) ) )
2619, 25anbi12d 747 . . . . . . . . 9  |-  ( c  =  C  ->  (
( ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  c
>.  \/  B  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  B >. ) )  <->  ( (
a  e.  ( EE
`  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
) )  /\  (
a  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  a >.  \/  C  Btwn  <. a ,  B >. ) ) ) )
2726rexbidv 3052 . . . . . . . 8  |-  ( c  =  C  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  c
>.  \/  B  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  B >. ) )  <->  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C , 
a >.  \/  C  Btwn  <.
a ,  B >. ) ) ) )
28 eleq1 2689 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
a  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
29283anbi1d 1403 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( a  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  <->  ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) ) ) )
30 breq1 4656 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
a  Btwn  <. B ,  C >. 
<->  A  Btwn  <. B ,  C >. ) )
31 opeq2 4403 . . . . . . . . . . . 12  |-  ( a  =  A  ->  <. C , 
a >.  =  <. C ,  A >. )
3231breq2d 4665 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( B  Btwn  <. C ,  a
>. 
<->  B  Btwn  <. C ,  A >. ) )
33 opeq1 4402 . . . . . . . . . . . 12  |-  ( a  =  A  ->  <. a ,  B >.  =  <. A ,  B >. )
3433breq2d 4665 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( C  Btwn  <. a ,  B >.  <-> 
C  Btwn  <. A ,  B >. ) )
3530, 32, 343orbi123d 1398 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( a  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  a >.  \/  C  Btwn  <. a ,  B >. )  <->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
3629, 35anbi12d 747 . . . . . . . . 9  |-  ( a  =  A  ->  (
( ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C , 
a >.  \/  C  Btwn  <.
a ,  B >. ) )  <->  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
3736rexbidv 3052 . . . . . . . 8  |-  ( a  =  A  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C , 
a >.  \/  C  Btwn  <.
a ,  B >. ) )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
3817, 27, 37eloprabg 6748 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  W  /\  A  e.  V )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
39383comr 1273 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
4039adantl 482 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
41 simpl 473 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  ->  ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) ) )
42 simp2 1062 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )  ->  B  e.  ( EE `  N
) )
4342anim2i 593 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( N  e.  NN  /\  B  e.  ( EE `  N
) ) )
44 3simpa 1058 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
) )  ->  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) )
4544anim2i 593 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
) ) )  -> 
( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n ) ) ) )
46 axdimuniq 25793 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  B  e.  ( EE `  n
) ) )  ->  N  =  n )
4746adantrrl 760 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) ) )  ->  N  =  n )
48 simprrl 804 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) ) )  ->  A  e.  ( EE `  n ) )
49 fveq2 6191 . . . . . . . . . . . 12  |-  ( N  =  n  ->  ( EE `  N )  =  ( EE `  n
) )
5049eleq2d 2687 . . . . . . . . . . 11  |-  ( N  =  n  ->  ( A  e.  ( EE `  N )  <->  A  e.  ( EE `  n ) ) )
5148, 50syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) ) )  ->  ( N  =  n  ->  A  e.  ( EE `  N ) ) )
5247, 51mpd 15 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) ) )  ->  A  e.  ( EE `  N ) )
5343, 45, 52syl2an 494 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) ) ) )  ->  A  e.  ( EE `  N ) )
5453exp32 631 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( n  e.  NN  ->  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  ->  A  e.  ( EE `  N ) ) ) )
5541, 54syl7 74 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( n  e.  NN  ->  ( (
( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  ->  A  e.  ( EE `  N ) ) ) )
5655rexlimdv 3030 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( E. n  e.  NN  (
( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  ->  A  e.  ( EE `  N ) ) )
5740, 56sylbid 230 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  ->  A  e.  ( EE `  N ) ) )
587, 57syl5bi 232 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( <. B ,  C >. { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } A  ->  A  e.  ( EE
`  N ) ) )
596, 58sylbid 230 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( A `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } <. B ,  C >.  ->  A  e.  ( EE `  N
) ) )
602, 59syl5bi 232 1  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( A  Colinear  <. B ,  C >.  ->  A  e.  ( EE `  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   <.cop 4183   class class class wbr 4653   `'ccnv 5113   ` cfv 5888   {coprab 6651   NNcn 11020   EEcee 25768    Btwn cbtwn 25769    Colinear ccolin 32144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-uz 11688  df-fz 12327  df-ee 25771  df-colinear 32146
This theorem is referenced by:  liness  32252
  Copyright terms: Public domain W3C validator