MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsub Structured version   Visualization version   Unicode version

Theorem connsub 21224
Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsub  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  (
( Jt  S )  e. Conn  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  S
)  =/=  (/)  /\  (
y  i^i  S )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  S ) )  ->  -.  S  C_  ( x  u.  y
) ) ) )
Distinct variable groups:    x, y, J    x, S, y    x, X, y

Proof of Theorem connsub
StepHypRef Expression
1 connsuba 21223 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  (
( Jt  S )  e. Conn  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  S
)  =/=  (/)  /\  (
y  i^i  S )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  S )  =  (/) )  ->  ( ( x  u.  y )  i^i  S )  =/= 
S ) ) )
2 inss1 3833 . . . . . . 7  |-  ( x  i^i  y )  C_  x
3 toponss 20731 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
43ad2ant2r 783 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  (
x  e.  J  /\  y  e.  J )
)  ->  x  C_  X
)
52, 4syl5ss 3614 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( x  i^i  y )  C_  X
)
6 reldisj 4020 . . . . . 6  |-  ( ( x  i^i  y ) 
C_  X  ->  (
( ( x  i^i  y )  i^i  S
)  =  (/)  <->  ( x  i^i  y )  C_  ( X  \  S ) ) )
75, 6syl 17 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
( x  i^i  y
)  i^i  S )  =  (/)  <->  ( x  i^i  y )  C_  ( X  \  S ) ) )
873anbi3d 1405 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
( x  i^i  S
)  =/=  (/)  /\  (
y  i^i  S )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  S )  =  (/) )  <->  ( ( x  i^i  S )  =/=  (/)  /\  ( y  i^i 
S )  =/=  (/)  /\  (
x  i^i  y )  C_  ( X  \  S
) ) ) )
9 sseqin2 3817 . . . . . . 7  |-  ( S 
C_  ( x  u.  y )  <->  ( (
x  u.  y )  i^i  S )  =  S )
109a1i 11 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( S  C_  ( x  u.  y
)  <->  ( ( x  u.  y )  i^i 
S )  =  S ) )
1110bicomd 213 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
( x  u.  y
)  i^i  S )  =  S  <->  S  C_  ( x  u.  y ) ) )
1211necon3abid 2830 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
( x  u.  y
)  i^i  S )  =/=  S  <->  -.  S  C_  (
x  u.  y ) ) )
138, 12imbi12d 334 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
( ( x  i^i 
S )  =/=  (/)  /\  (
y  i^i  S )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  S )  =  (/) )  ->  ( ( x  u.  y )  i^i  S )  =/= 
S )  <->  ( (
( x  i^i  S
)  =/=  (/)  /\  (
y  i^i  S )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  S ) )  ->  -.  S  C_  ( x  u.  y
) ) ) )
14132ralbidva 2988 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  S )  =/=  (/)  /\  ( y  i^i 
S )  =/=  (/)  /\  (
( x  i^i  y
)  i^i  S )  =  (/) )  ->  (
( x  u.  y
)  i^i  S )  =/=  S )  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  S
)  =/=  (/)  /\  (
y  i^i  S )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  S ) )  ->  -.  S  C_  ( x  u.  y
) ) ) )
151, 14bitrd 268 1  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  (
( Jt  S )  e. Conn  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  S
)  =/=  (/)  /\  (
y  i^i  S )  =/=  (/)  /\  ( x  i^i  y )  C_  ( X  \  S ) )  ->  -.  S  C_  ( x  u.  y
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ` cfv 5888  (class class class)co 6650   ↾t crest 16081  TopOnctopon 20715  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-conn 21215
This theorem is referenced by:  iunconn  21231  clsconn  21233  reconn  22631  iunconnlem2  39171
  Copyright terms: Public domain W3C validator