MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas Structured version   Visualization version   Unicode version

Theorem dchrelbas 24961
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of  CC, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g  |-  G  =  (DChr `  N )
dchrval.z  |-  Z  =  (ℤ/n `  N )
dchrval.b  |-  B  =  ( Base `  Z
)
dchrval.u  |-  U  =  (Unit `  Z )
dchrval.n  |-  ( ph  ->  N  e.  NN )
dchrbas.b  |-  D  =  ( Base `  G
)
Assertion
Ref Expression
dchrelbas  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  ( ( B  \  U )  X. 
{ 0 } ) 
C_  X ) ) )

Proof of Theorem dchrelbas
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dchrval.g . . . 4  |-  G  =  (DChr `  N )
2 dchrval.z . . . 4  |-  Z  =  (ℤ/n `  N )
3 dchrval.b . . . 4  |-  B  =  ( Base `  Z
)
4 dchrval.u . . . 4  |-  U  =  (Unit `  Z )
5 dchrval.n . . . 4  |-  ( ph  ->  N  e.  NN )
6 dchrbas.b . . . 4  |-  D  =  ( Base `  G
)
71, 2, 3, 4, 5, 6dchrbas 24960 . . 3  |-  ( ph  ->  D  =  { x  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  |  ( ( B  \  U
)  X.  { 0 } )  C_  x } )
87eleq2d 2687 . 2  |-  ( ph  ->  ( X  e.  D  <->  X  e.  { x  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  |  ( ( B  \  U
)  X.  { 0 } )  C_  x } ) )
9 sseq2 3627 . . 3  |-  ( x  =  X  ->  (
( ( B  \  U )  X.  {
0 } )  C_  x 
<->  ( ( B  \  U )  X.  {
0 } )  C_  X ) )
109elrab 3363 . 2  |-  ( X  e.  { x  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  |  ( ( B  \  U
)  X.  { 0 } )  C_  x } 
<->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  /\  (
( B  \  U
)  X.  { 0 } )  C_  X
) )
118, 10syl6bb 276 1  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  ( ( B  \  U )  X. 
{ 0 } ) 
C_  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571    C_ wss 3574   {csn 4177    X. cxp 5112   ` cfv 5888  (class class class)co 6650   0cc0 9936   NNcn 11020   Basecbs 15857   MndHom cmhm 17333  mulGrpcmgp 18489  Unitcui 18639  ℂfldccnfld 19746  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-dchr 24958
This theorem is referenced by:  dchrelbas2  24962  dchrmhm  24966
  Copyright terms: Public domain W3C validator