Proof of Theorem dchrelbas2
Step | Hyp | Ref
| Expression |
1 | | dchrval.g |
. . 3
DChr   |
2 | | dchrval.z |
. . 3
ℤ/nℤ   |
3 | | dchrval.b |
. . 3
     |
4 | | dchrval.u |
. . 3
Unit   |
5 | | dchrval.n |
. . 3
   |
6 | | dchrbas.b |
. . 3
     |
7 | 1, 2, 3, 4, 5, 6 | dchrelbas 24961 |
. 2
    mulGrp  MndHom mulGrp ℂfld
          |
8 | | eqid 2622 |
. . . . . . . . . . 11
mulGrp  mulGrp   |
9 | 8, 3 | mgpbas 18495 |
. . . . . . . . . 10
   mulGrp    |
10 | | eqid 2622 |
. . . . . . . . . . 11
mulGrp ℂfld mulGrp ℂfld |
11 | | cnfldbas 19750 |
. . . . . . . . . . 11
  ℂfld |
12 | 10, 11 | mgpbas 18495 |
. . . . . . . . . 10
   mulGrp ℂfld  |
13 | 9, 12 | mhmf 17340 |
. . . . . . . . 9
  mulGrp 
MndHom mulGrp ℂfld       |
14 | 13 | adantl 482 |
. . . . . . . 8
 
 mulGrp  MndHom mulGrp ℂfld        |
15 | | ffun 6048 |
. . . . . . . 8
       |
16 | 14, 15 | syl 17 |
. . . . . . 7
 
 mulGrp  MndHom mulGrp ℂfld    |
17 | | funssres 5930 |
. . . . . . 7
        
                |
18 | 16, 17 | sylan 488 |
. . . . . 6
    mulGrp  MndHom mulGrp ℂfld                         |
19 | | simpr 477 |
. . . . . . 7
    mulGrp  MndHom mulGrp ℂfld  
                              |
20 | | resss 5422 |
. . . . . . 7
       
 |
21 | 19, 20 | syl6eqssr 3656 |
. . . . . 6
    mulGrp  MndHom mulGrp ℂfld  
                      |
22 | 18, 21 | impbida 877 |
. . . . 5
 
 mulGrp  MndHom mulGrp ℂfld        
                 |
23 | | 0cn 10032 |
. . . . . . . . 9
 |
24 | | fconst6g 6094 |
. . . . . . . . 9
               |
25 | 23, 24 | mp1i 13 |
. . . . . . . 8
 
 mulGrp  MndHom mulGrp ℂfld                |
26 | | fdm 6051 |
. . . . . . . 8
            
          |
27 | 25, 26 | syl 17 |
. . . . . . 7
 
 mulGrp  MndHom mulGrp ℂfld            |
28 | 27 | reseq2d 5396 |
. . . . . 6
 
 mulGrp  MndHom mulGrp ℂfld                |
29 | 28 | eqeq1d 2624 |
. . . . 5
 
 mulGrp  MndHom mulGrp ℂfld                              |
30 | 22, 29 | bitrd 268 |
. . . 4
 
 mulGrp  MndHom mulGrp ℂfld        
             |
31 | | difss 3737 |
. . . . . . . 8
   |
32 | | fssres 6070 |
. . . . . . . 8
      
              |
33 | 14, 31, 32 | sylancl 694 |
. . . . . . 7
 
 mulGrp  MndHom mulGrp ℂfld              |
34 | | ffn 6045 |
. . . . . . 7
 
                 |
35 | 33, 34 | syl 17 |
. . . . . 6
 
 mulGrp  MndHom mulGrp ℂfld          |
36 | | ffn 6045 |
. . . . . . 7
            
          |
37 | 25, 36 | syl 17 |
. . . . . 6
 
 mulGrp  MndHom mulGrp ℂfld            |
38 | | eqfnfv 6311 |
. . . . . 6
                           
                         |
39 | 35, 37, 38 | syl2anc 693 |
. . . . 5
 
 mulGrp  MndHom mulGrp ℂfld    
              
                  |
40 | | fvres 6207 |
. . . . . . . 8
                 |
41 | | c0ex 10034 |
. . . . . . . . 9
 |
42 | 41 | fvconst2 6469 |
. . . . . . . 8
               |
43 | 40, 42 | eqeq12d 2637 |
. . . . . . 7
      
                      |
44 | 43 | ralbiia 2979 |
. . . . . 6
 
    
               
          |
45 | | eldif 3584 |
. . . . . . . . 9
  

   |
46 | 45 | imbi1i 339 |
. . . . . . . 8
                   |
47 | | impexp 462 |
. . . . . . . 8
   
     

        |
48 | | con1b 348 |
. . . . . . . . . 10
           
   |
49 | | df-ne 2795 |
. . . . . . . . . . 11
    
      |
50 | 49 | imbi1i 339 |
. . . . . . . . . 10
     
         |
51 | 48, 50 | bitr4i 267 |
. . . . . . . . 9
               |
52 | 51 | imbi2i 326 |
. . . . . . . 8
  
     

         |
53 | 46, 47, 52 | 3bitri 286 |
. . . . . . 7
                   |
54 | 53 | ralbii2 2978 |
. . . . . 6
 
                |
55 | 44, 54 | bitri 264 |
. . . . 5
 
    
               

    
   |
56 | 39, 55 | syl6bb 276 |
. . . 4
 
 mulGrp  MndHom mulGrp ℂfld    
                  |
57 | 30, 56 | bitrd 268 |
. . 3
 
 mulGrp  MndHom mulGrp ℂfld        

    
    |
58 | 57 | pm5.32da 673 |
. 2
    mulGrp  MndHom mulGrp ℂfld          mulGrp  MndHom mulGrp ℂfld 
    
     |
59 | 7, 58 | bitrd 268 |
1
    mulGrp  MndHom mulGrp ℂfld

    
     |