MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrex Structured version   Visualization version   Unicode version

Theorem enrex 9888
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enrex  |-  ~R  e.  _V

Proof of Theorem enrex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npex 9808 . . . 4  |-  P.  e.  _V
21, 1xpex 6962 . . 3  |-  ( P. 
X.  P. )  e.  _V
32, 2xpex 6962 . 2  |-  ( ( P.  X.  P. )  X.  ( P.  X.  P. ) )  e.  _V
4 df-enr 9877 . . 3  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
5 opabssxp 5193 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }  C_  (
( P.  X.  P. )  X.  ( P.  X.  P. ) )
64, 5eqsstri 3635 . 2  |-  ~R  C_  (
( P.  X.  P. )  X.  ( P.  X.  P. ) )
73, 6ssexi 4803 1  |-  ~R  e.  _V
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   <.cop 4183   {copab 4712    X. cxp 5112  (class class class)co 6650   P.cnp 9681    +P. cpp 9683    ~R cer 9686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066  df-ni 9694  df-nq 9734  df-np 9803  df-enr 9877
This theorem is referenced by:  addsrpr  9896  mulsrpr  9897  ltsrpr  9898  0r  9901  1sr  9902  m1r  9903  addclsr  9904  mulclsr  9905  recexsrlem  9924
  Copyright terms: Public domain W3C validator