MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclsr Structured version   Visualization version   Unicode version

Theorem mulclsr 9905
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulclsr  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  e.  R. )

Proof of Theorem mulclsr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 9878 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 6657 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  =  ( A  .R  [ <. z ,  w >. ]  ~R  ) )
32eleq1d 2686 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  .R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
4 oveq2 6658 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  .R  [ <. z ,  w >. ]  ~R  )  =  ( A  .R  B ) )
54eleq1d 2686 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  .R  [
<. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  .R  B )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
6 mulsrpr 9897 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
7 mulclpr 9842 . . . . . . . 8  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
8 mulclpr 9842 . . . . . . . 8  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
9 addclpr 9840 . . . . . . . 8  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
107, 8, 9syl2an 494 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
1110an4s 869 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
12 mulclpr 9842 . . . . . . . 8  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
13 mulclpr 9842 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
14 addclpr 9840 . . . . . . . 8  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )
1512, 13, 14syl2an 494 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  w  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
1615an42s 870 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
1711, 16jca 554 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  /\  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. ) )
18 opelxpi 5148 . . . . 5  |-  ( ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P.  /\  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )  -> 
<. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >.  e.  ( P.  X.  P. ) )
19 enrex 9888 . . . . . 6  |-  ~R  e.  _V
2019ecelqsi 7803 . . . . 5  |-  ( <.
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >.  e.  ( P.  X.  P. )  ->  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
2117, 18, 203syl 18 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
226, 21eqeltrd 2701 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) )
231, 3, 5, 222ecoptocl 7838 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  e.  ( ( P.  X.  P. ) /.  ~R  ) )
2423, 1syl6eleqr 2712 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  e.  R. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    X. cxp 5112  (class class class)co 6650   [cec 7740   /.cqs 7741   P.cnp 9681    +P. cpp 9683    .P. cmp 9684    ~R cer 9686   R.cnr 9687    .R cmr 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-mp 9806  df-ltp 9807  df-enr 9877  df-nr 9878  df-mr 9880
This theorem is referenced by:  dmmulsr  9907  negexsr  9923  sqgt0sr  9927  recexsr  9928  map2psrpr  9931  mulresr  9960  axmulf  9967  axmulrcl  9975  axmulass  9978  axdistr  9979  axrnegex  9983
  Copyright terms: Public domain W3C validator