MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0r Structured version   Visualization version   Unicode version

Theorem 0r 9901
Description: The constant  0R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
0r  |-  0R  e.  R.

Proof of Theorem 0r
StepHypRef Expression
1 1pr 9837 . . . 4  |-  1P  e.  P.
2 opelxpi 5148 . . . 4  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  ->  <. 1P ,  1P >.  e.  ( P.  X.  P. ) )
31, 1, 2mp2an 708 . . 3  |-  <. 1P ,  1P >.  e.  ( P. 
X.  P. )
4 enrex 9888 . . . 4  |-  ~R  e.  _V
54ecelqsi 7803 . . 3  |-  ( <. 1P ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. 1P ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
63, 5ax-mp 5 . 2  |-  [ <. 1P ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
7 df-0r 9882 . 2  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
8 df-nr 9878 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
96, 7, 83eltr4i 2714 1  |-  0R  e.  R.
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1990   <.cop 4183    X. cxp 5112   [cec 7740   /.cqs 7741   P.cnp 9681   1Pc1p 9682    ~R cer 9686   R.cnr 9687   0Rc0r 9688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-enr 9877  df-nr 9878  df-0r 9882
This theorem is referenced by:  sqgt0sr  9927  opelreal  9951  elreal  9952  elreal2  9953  eqresr  9958  addresr  9959  mulresr  9960  axresscn  9969  axicn  9971  axi2m1  9980  axcnre  9985
  Copyright terms: Public domain W3C validator