MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1finf1o Structured version   Visualization version   Unicode version

Theorem f1finf1o 8187
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.)
Assertion
Ref Expression
f1finf1o  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  <-> 
F : A -1-1-onto-> B ) )

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
2 f1f 6101 . . . . . . 7  |-  ( F : A -1-1-> B  ->  F : A --> B )
32adantl 482 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A
--> B )
4 ffn 6045 . . . . . 6  |-  ( F : A --> B  ->  F  Fn  A )
53, 4syl 17 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F  Fn  A )
6 simpll 790 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  ~~  B )
7 frn 6053 . . . . . . . . . 10  |-  ( F : A --> B  ->  ran  F  C_  B )
83, 7syl 17 . . . . . . . . 9  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  C_  B )
9 df-pss 3590 . . . . . . . . . 10  |-  ( ran 
F  C.  B  <->  ( ran  F 
C_  B  /\  ran  F  =/=  B ) )
109baib 944 . . . . . . . . 9  |-  ( ran 
F  C_  B  ->  ( ran  F  C.  B  <->  ran 
F  =/=  B ) )
118, 10syl 17 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( ran  F 
C.  B  <->  ran  F  =/= 
B ) )
12 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  B  e.  Fin )
13 relen 7960 . . . . . . . . . . . . . . 15  |-  Rel  ~~
1413brrelexi 5158 . . . . . . . . . . . . . 14  |-  ( A 
~~  B  ->  A  e.  _V )
156, 14syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  e.  _V )
1612, 15elmapd 7871 . . . . . . . . . . . 12  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( F  e.  ( B  ^m  A
)  <->  F : A --> B ) )
173, 16mpbird 247 . . . . . . . . . . 11  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F  e.  ( B  ^m  A ) )
18 f1f1orn 6148 . . . . . . . . . . . 12  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
1918adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A
-1-1-onto-> ran  F )
20 f1oen3g 7971 . . . . . . . . . . 11  |-  ( ( F  e.  ( B  ^m  A )  /\  F : A -1-1-onto-> ran  F )  ->  A  ~~  ran  F )
2117, 19, 20syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  A  ~~  ran  F )
22 php3 8146 . . . . . . . . . . . 12  |-  ( ( B  e.  Fin  /\  ran  F  C.  B )  ->  ran  F  ~<  B )
2322ex 450 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  ( ran  F  C.  B  ->  ran 
F  ~<  B ) )
2412, 23syl 17 . . . . . . . . . 10  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( ran  F 
C.  B  ->  ran  F 
~<  B ) )
25 ensdomtr 8096 . . . . . . . . . 10  |-  ( ( A  ~~  ran  F  /\  ran  F  ~<  B )  ->  A  ~<  B )
2621, 24, 25syl6an 568 . . . . . . . . 9  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( ran  F 
C.  B  ->  A  ~<  B ) )
27 sdomnen 7984 . . . . . . . . 9  |-  ( A 
~<  B  ->  -.  A  ~~  B )
2826, 27syl6 35 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( ran  F 
C.  B  ->  -.  A  ~~  B ) )
2911, 28sylbird 250 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( ran  F  =/=  B  ->  -.  A  ~~  B ) )
3029necon4ad 2813 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ( A  ~~  B  ->  ran  F  =  B ) )
316, 30mpd 15 . . . . 5  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  ran  F  =  B )
32 df-fo 5894 . . . . 5  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
335, 31, 32sylanbrc 698 . . . 4  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A -onto-> B )
34 df-f1o 5895 . . . 4  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
351, 33, 34sylanbrc 698 . . 3  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  F : A -1-1-> B )  ->  F : A
-1-1-onto-> B )
3635ex 450 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  ->  F : A -1-1-onto-> B
) )
37 f1of1 6136 . 2  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
3836, 37impbid1 215 1  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  <-> 
F : A -1-1-onto-> B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574    C. wpss 3575   class class class wbr 4653   ran crn 5115    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887  (class class class)co 6650    ^m cmap 7857    ~~ cen 7952    ~< csdm 7954   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  hashfac  13242  crth  15483  eulerthlem2  15487  fidomndrnglem  19306  mdetunilem8  20425  basellem4  24810  lgsqrlem4  25074  lgseisenlem2  25101
  Copyright terms: Public domain W3C validator