| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1finf1o | Structured version Visualization version Unicode version | ||
| Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) |
| Ref | Expression |
|---|---|
| f1finf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . 4
| |
| 2 | f1f 6101 |
. . . . . . 7
| |
| 3 | 2 | adantl 482 |
. . . . . 6
|
| 4 | ffn 6045 |
. . . . . 6
| |
| 5 | 3, 4 | syl 17 |
. . . . 5
|
| 6 | simpll 790 |
. . . . . 6
| |
| 7 | frn 6053 |
. . . . . . . . . 10
| |
| 8 | 3, 7 | syl 17 |
. . . . . . . . 9
|
| 9 | df-pss 3590 |
. . . . . . . . . 10
| |
| 10 | 9 | baib 944 |
. . . . . . . . 9
|
| 11 | 8, 10 | syl 17 |
. . . . . . . 8
|
| 12 | simplr 792 |
. . . . . . . . . . . . 13
| |
| 13 | relen 7960 |
. . . . . . . . . . . . . . 15
| |
| 14 | 13 | brrelexi 5158 |
. . . . . . . . . . . . . 14
|
| 15 | 6, 14 | syl 17 |
. . . . . . . . . . . . 13
|
| 16 | 12, 15 | elmapd 7871 |
. . . . . . . . . . . 12
|
| 17 | 3, 16 | mpbird 247 |
. . . . . . . . . . 11
|
| 18 | f1f1orn 6148 |
. . . . . . . . . . . 12
| |
| 19 | 18 | adantl 482 |
. . . . . . . . . . 11
|
| 20 | f1oen3g 7971 |
. . . . . . . . . . 11
| |
| 21 | 17, 19, 20 | syl2anc 693 |
. . . . . . . . . 10
|
| 22 | php3 8146 |
. . . . . . . . . . . 12
| |
| 23 | 22 | ex 450 |
. . . . . . . . . . 11
|
| 24 | 12, 23 | syl 17 |
. . . . . . . . . 10
|
| 25 | ensdomtr 8096 |
. . . . . . . . . 10
| |
| 26 | 21, 24, 25 | syl6an 568 |
. . . . . . . . 9
|
| 27 | sdomnen 7984 |
. . . . . . . . 9
| |
| 28 | 26, 27 | syl6 35 |
. . . . . . . 8
|
| 29 | 11, 28 | sylbird 250 |
. . . . . . 7
|
| 30 | 29 | necon4ad 2813 |
. . . . . 6
|
| 31 | 6, 30 | mpd 15 |
. . . . 5
|
| 32 | df-fo 5894 |
. . . . 5
| |
| 33 | 5, 31, 32 | sylanbrc 698 |
. . . 4
|
| 34 | df-f1o 5895 |
. . . 4
| |
| 35 | 1, 33, 34 | sylanbrc 698 |
. . 3
|
| 36 | 35 | ex 450 |
. 2
|
| 37 | f1of1 6136 |
. 2
| |
| 38 | 36, 37 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 |
| This theorem is referenced by: hashfac 13242 crth 15483 eulerthlem2 15487 fidomndrnglem 19306 mdetunilem8 20425 basellem4 24810 lgsqrlem4 25074 lgseisenlem2 25101 |
| Copyright terms: Public domain | W3C validator |