MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem4 Structured version   Visualization version   Unicode version

Theorem basellem4 24810
Description: Lemma for basel 24816. By basellem3 24809, the expression  P ( ( cot x ) ^
2 )  =  sin ( N x )  / 
( sin x ) ^ N goes to zero whenever  x  =  n pi  /  N for some  n  e.  ( 1 ... M
), so this function enumerates  M distinct roots of a degree-  M polynomial, which must therefore be all the roots by fta1 24063. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.n  |-  N  =  ( ( 2  x.  M )  +  1 )
basel.p  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
basel.t  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
Assertion
Ref Expression
basellem4  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) )
Distinct variable groups:    t, j, n, M    j, N, n, t    P, n
Allowed substitution hints:    P( t, j)    T( t, j, n)

Proof of Theorem basellem4
Dummy variables  k  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basel.n . . . . . . . . 9  |-  N  =  ( ( 2  x.  M )  +  1 )
21basellem1 24807 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( n  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
3 tanrpcl 24256 . . . . . . . 8  |-  ( ( ( n  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( n  x.  pi )  /  N
) )  e.  RR+ )
42, 3syl 17 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( tan `  (
( n  x.  pi )  /  N ) )  e.  RR+ )
5 2z 11409 . . . . . . . 8  |-  2  e.  ZZ
6 znegcl 11412 . . . . . . . 8  |-  ( 2  e.  ZZ  ->  -u 2  e.  ZZ )
75, 6ax-mp 5 . . . . . . 7  |-  -u 2  e.  ZZ
8 rpexpcl 12879 . . . . . . 7  |-  ( ( ( tan `  (
( n  x.  pi )  /  N ) )  e.  RR+  /\  -u 2  e.  ZZ )  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  e.  RR+ )
94, 7, 8sylancl 694 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  RR+ )
109rpcnd 11874 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC )
11 basel.p . . . . . . . 8  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
121, 11basellem3 24809 . . . . . . 7  |-  ( ( M  e.  NN  /\  ( ( n  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) ) )  ->  ( P `  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( sin `  ( N  x.  ( ( n  x.  pi )  /  N ) ) )  /  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
) ) )
132, 12syldan 487 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( P `  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( sin `  ( N  x.  ( ( n  x.  pi )  /  N ) ) )  /  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
) ) )
14 elfzelz 12342 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... M )  ->  n  e.  ZZ )
1514adantl 482 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  n  e.  ZZ )
1615zred 11482 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  n  e.  RR )
17 pire 24210 . . . . . . . . . . . 12  |-  pi  e.  RR
18 remulcl 10021 . . . . . . . . . . . 12  |-  ( ( n  e.  RR  /\  pi  e.  RR )  -> 
( n  x.  pi )  e.  RR )
1916, 17, 18sylancl 694 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( n  x.  pi )  e.  RR )
2019recnd 10068 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( n  x.  pi )  e.  CC )
21 2nn 11185 . . . . . . . . . . . . . . 15  |-  2  e.  NN
22 nnmulcl 11043 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
2321, 22mpan 706 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  NN )
2423peano2nnd 11037 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  +  1 )  e.  NN )
251, 24syl5eqel 2705 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  N  e.  NN )
2625adantr 481 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  NN )
2726nncnd 11036 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  CC )
2826nnne0d 11065 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  =/=  0
)
2920, 27, 28divcan2d 10803 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( N  x.  ( ( n  x.  pi )  /  N
) )  =  ( n  x.  pi ) )
3029fveq2d 6195 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  ( N  x.  ( (
n  x.  pi )  /  N ) ) )  =  ( sin `  ( n  x.  pi ) ) )
31 sinkpi 24271 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  ( sin `  ( n  x.  pi ) )  =  0 )
3215, 31syl 17 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
n  x.  pi ) )  =  0 )
3330, 32eqtrd 2656 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  ( N  x.  ( (
n  x.  pi )  /  N ) ) )  =  0 )
3433oveq1d 6665 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( sin `  ( N  x.  (
( n  x.  pi )  /  N ) ) )  /  ( ( sin `  ( ( n  x.  pi )  /  N ) ) ^ N ) )  =  ( 0  / 
( ( sin `  (
( n  x.  pi )  /  N ) ) ^ N ) ) )
3519, 26nndivred 11069 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( n  x.  pi )  /  N )  e.  RR )
3635resincld 14873 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
( n  x.  pi )  /  N ) )  e.  RR )
3736recnd 10068 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
( n  x.  pi )  /  N ) )  e.  CC )
3826nnnn0d 11351 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  NN0 )
3937, 38expcld 13008 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
)  e.  CC )
40 sincosq1sgn 24250 . . . . . . . . . . 11  |-  ( ( ( n  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( 0  <  ( sin `  (
( n  x.  pi )  /  N ) )  /\  0  <  ( cos `  ( ( n  x.  pi )  /  N ) ) ) )
412, 40syl 17 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( 0  < 
( sin `  (
( n  x.  pi )  /  N ) )  /\  0  <  ( cos `  ( ( n  x.  pi )  /  N ) ) ) )
4241simpld 475 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  0  <  ( sin `  ( ( n  x.  pi )  /  N ) ) )
4342gt0ne0d 10592 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
( n  x.  pi )  /  N ) )  =/=  0 )
4426nnzd 11481 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  ZZ )
4537, 43, 44expne0d 13014 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
)  =/=  0 )
4639, 45div0d 10800 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( 0  / 
( ( sin `  (
( n  x.  pi )  /  N ) ) ^ N ) )  =  0 )
4713, 34, 463eqtrd 2660 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( P `  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  0 )
481, 11basellem2 24808 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( P  e.  (Poly `  CC )  /\  (deg `  P
)  =  M  /\  (coeff `  P )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n
) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) ) )
4948simp1d 1073 . . . . . . . 8  |-  ( M  e.  NN  ->  P  e.  (Poly `  CC )
)
50 plyf 23954 . . . . . . . 8  |-  ( P  e.  (Poly `  CC )  ->  P : CC --> CC )
51 ffn 6045 . . . . . . . 8  |-  ( P : CC --> CC  ->  P  Fn  CC )
5249, 50, 513syl 18 . . . . . . 7  |-  ( M  e.  NN  ->  P  Fn  CC )
5352adantr 481 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  P  Fn  CC )
54 fniniseg 6338 . . . . . 6  |-  ( P  Fn  CC  ->  (
( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  e.  ( `' P " { 0 } )  <-> 
( ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC  /\  ( P `  ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  0 ) ) )
5553, 54syl 17 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 )  e.  ( `' P " { 0 } )  <-> 
( ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC  /\  ( P `  ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  0 ) ) )
5610, 47, 55mpbir2and 957 . . . 4  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  ( `' P " { 0 } ) )
57 basel.t . . . 4  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
5856, 57fmptd 6385 . . 3  |-  ( M  e.  NN  ->  T : ( 1 ... M ) --> ( `' P " { 0 } ) )
59 fveq2 6191 . . . . . 6  |-  ( k  =  m  ->  ( T `  k )  =  ( T `  m ) )
60 fveq2 6191 . . . . . 6  |-  ( k  =  x  ->  ( T `  k )  =  ( T `  x ) )
61 fveq2 6191 . . . . . 6  |-  ( k  =  y  ->  ( T `  k )  =  ( T `  y ) )
6214zred 11482 . . . . . . 7  |-  ( n  e.  ( 1 ... M )  ->  n  e.  RR )
6362ssriv 3607 . . . . . 6  |-  ( 1 ... M )  C_  RR
649rpred 11872 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  RR )
6564, 57fmptd 6385 . . . . . . 7  |-  ( M  e.  NN  ->  T : ( 1 ... M ) --> RR )
6665ffvelrnda 6359 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( T `  k )  e.  RR )
67 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
k  <  m )
6863sseli 3599 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 1 ... M )  ->  k  e.  RR )
6968ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
k  e.  RR )
7063sseli 3599 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... M )  ->  m  e.  RR )
7170ad2antll 765 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  m  e.  RR )
7217a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  pi  e.  RR )
73 pipos 24212 . . . . . . . . . . . . . . . 16  |-  0  <  pi
7473a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
0  <  pi )
75 ltmul1 10873 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  m  e.  RR  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( k  < 
m  <->  ( k  x.  pi )  <  (
m  x.  pi ) ) )
7669, 71, 72, 74, 75syl112anc 1330 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( k  <  m  <->  ( k  x.  pi )  <  ( m  x.  pi ) ) )
7767, 76mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( k  x.  pi )  <  ( m  x.  pi ) )
78 remulcl 10021 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  pi  e.  RR )  -> 
( k  x.  pi )  e.  RR )
7969, 17, 78sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( k  x.  pi )  e.  RR )
80 remulcl 10021 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  RR  /\  pi  e.  RR )  -> 
( m  x.  pi )  e.  RR )
8171, 17, 80sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( m  x.  pi )  e.  RR )
8225ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  N  e.  NN )
8382nnred 11035 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  N  e.  RR )
8482nngt0d 11064 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
0  <  N )
85 ltdiv1 10887 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  pi )  e.  RR  /\  (
m  x.  pi )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( k  x.  pi )  <  (
m  x.  pi )  <-> 
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N ) ) )
8679, 81, 83, 84, 85syl112anc 1330 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  <  (
m  x.  pi )  <-> 
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N ) ) )
8777, 86mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N ) )
88 neghalfpirx 24218 . . . . . . . . . . . . . . 15  |-  -u (
pi  /  2 )  e.  RR*
89 pirp 24213 . . . . . . . . . . . . . . . . 17  |-  pi  e.  RR+
90 rphalfcl 11858 . . . . . . . . . . . . . . . . 17  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  e.  RR+ )
91 rpge0 11845 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  /  2 )  e.  RR+  ->  0  <_ 
( pi  /  2
) )
9289, 90, 91mp2b 10 . . . . . . . . . . . . . . . 16  |-  0  <_  ( pi  /  2
)
93 halfpire 24216 . . . . . . . . . . . . . . . . 17  |-  ( pi 
/  2 )  e.  RR
94 le0neg2 10537 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  /  2 )  e.  RR  ->  (
0  <_  ( pi  /  2 )  <->  -u ( pi 
/  2 )  <_ 
0 ) )
9593, 94ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 0  <_  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <_ 
0 )
9692, 95mpbi 220 . . . . . . . . . . . . . . 15  |-  -u (
pi  /  2 )  <_  0
97 iooss1 12210 . . . . . . . . . . . . . . 15  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  -u ( pi  /  2
)  <_  0 )  ->  ( 0 (,) ( pi  /  2
) )  C_  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
9888, 96, 97mp2an 708 . . . . . . . . . . . . . 14  |-  ( 0 (,) ( pi  / 
2 ) )  C_  ( -u ( pi  / 
2 ) (,) (
pi  /  2 ) )
991basellem1 24807 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
10099ad2ant2r 783 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) ) )
10198, 100sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  /  N
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
1021basellem1 24807 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN  /\  m  e.  ( 1 ... M ) )  ->  ( ( m  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
103102ad2ant2rl 785 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( m  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) ) )
10498, 103sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( m  x.  pi )  /  N
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
105 tanord 24284 . . . . . . . . . . . . 13  |-  ( ( ( ( k  x.  pi )  /  N
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  ( ( m  x.  pi )  /  N )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) ) )  ->  (
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N )  <->  ( tan `  ( ( k  x.  pi )  /  N
) )  <  ( tan `  ( ( m  x.  pi )  /  N ) ) ) )
106101, 104, 105syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( ( k  x.  pi )  /  N )  <  (
( m  x.  pi )  /  N )  <->  ( tan `  ( ( k  x.  pi )  /  N
) )  <  ( tan `  ( ( m  x.  pi )  /  N ) ) ) )
10787, 106mpbid 222 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) ) )
108 tanrpcl 24256 . . . . . . . . . . . . 13  |-  ( ( ( k  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( k  x.  pi )  /  N
) )  e.  RR+ )
109100, 108syl 17 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+ )
110 tanrpcl 24256 . . . . . . . . . . . . 13  |-  ( ( ( m  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( m  x.  pi )  /  N
) )  e.  RR+ )
111103, 110syl 17 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( m  x.  pi )  /  N ) )  e.  RR+ )
112 rprege0 11847 . . . . . . . . . . . . 13  |-  ( ( tan `  ( ( k  x.  pi )  /  N ) )  e.  RR+  ->  ( ( tan `  ( ( k  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( k  x.  pi )  /  N ) ) ) )
113 rprege0 11847 . . . . . . . . . . . . 13  |-  ( ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR+  ->  ( ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( m  x.  pi )  /  N ) ) ) )
114 lt2sq 12937 . . . . . . . . . . . . 13  |-  ( ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( k  x.  pi )  /  N ) ) )  /\  ( ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( m  x.  pi )  /  N ) ) ) )  ->  (
( tan `  (
( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) )  <-> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
115112, 113, 114syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+  /\  ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR+ )  ->  ( ( tan `  ( ( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) )  <-> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
116109, 111, 115syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) )  <-> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
117107, 116mpbid 222 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) )
118 rpexpcl 12879 . . . . . . . . . . . 12  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
119109, 5, 118sylancl 694 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
120 rpexpcl 12879 . . . . . . . . . . . 12  |-  ( ( ( tan `  (
( m  x.  pi )  /  N ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
121111, 5, 120sylancl 694 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
122119, 121ltrecd 11890 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  <  ( ( tan `  ( ( m  x.  pi )  /  N ) ) ^ 2 )  <->  ( 1  /  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ 2 ) )  <  (
1  /  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
123117, 122mpbid 222 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( 1  /  (
( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) )  <  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
124 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
n  x.  pi )  =  ( m  x.  pi ) )
125124oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( n  x.  pi )  /  N )  =  ( ( m  x.  pi )  /  N
) )
126125fveq2d 6195 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( tan `  ( ( n  x.  pi )  /  N ) )  =  ( tan `  (
( m  x.  pi )  /  N ) ) )
127126oveq1d 6665 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  =  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ -u 2
) )
128 ovex 6678 . . . . . . . . . . . 12  |-  ( ( tan `  ( ( m  x.  pi )  /  N ) ) ^ -u 2 )  e.  _V
129127, 57, 128fvmpt 6282 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... M )  ->  ( T `  m )  =  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ -u 2
) )
130129ad2antll 765 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  m
)  =  ( ( tan `  ( ( m  x.  pi )  /  N ) ) ^ -u 2 ) )
131111rpcnd 11874 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( m  x.  pi )  /  N ) )  e.  CC )
132 2nn0 11309 . . . . . . . . . . 11  |-  2  e.  NN0
133 expneg 12868 . . . . . . . . . . 11  |-  ( ( ( tan `  (
( m  x.  pi )  /  N ) )  e.  CC  /\  2  e.  NN0 )  ->  (
( tan `  (
( m  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
134131, 132, 133sylancl 694 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
135130, 134eqtrd 2656 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  m
)  =  ( 1  /  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ 2 ) ) )
136 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
n  x.  pi )  =  ( k  x.  pi ) )
137136oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( n  x.  pi )  /  N )  =  ( ( k  x.  pi )  /  N
) )
138137fveq2d 6195 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( tan `  ( ( n  x.  pi )  /  N ) )  =  ( tan `  (
( k  x.  pi )  /  N ) ) )
139138oveq1d 6665 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
140 ovex 6678 . . . . . . . . . . . 12  |-  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 )  e.  _V
141139, 57, 140fvmpt 6282 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... M )  ->  ( T `  k )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
142141ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  k
)  =  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 ) )
143109rpcnd 11874 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  e.  CC )
144 expneg 12868 . . . . . . . . . . 11  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  CC  /\  2  e.  NN0 )  ->  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
145143, 132, 144sylancl 694 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
146142, 145eqtrd 2656 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  k
)  =  ( 1  /  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 ) ) )
147123, 135, 1463brtr4d 4685 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  m
)  <  ( T `  k ) )
148147an32s 846 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  ( k  e.  ( 1 ... M )  /\  m  e.  ( 1 ... M ) ) )  /\  k  <  m )  ->  ( T `  m )  <  ( T `  k
) )
149148ex 450 . . . . . 6  |-  ( ( M  e.  NN  /\  ( k  e.  ( 1 ... M )  /\  m  e.  ( 1 ... M ) ) )  ->  (
k  <  m  ->  ( T `  m )  <  ( T `  k ) ) )
15059, 60, 61, 63, 66, 149eqord2 10559 . . . . 5  |-  ( ( M  e.  NN  /\  ( x  e.  (
1 ... M )  /\  y  e.  ( 1 ... M ) ) )  ->  ( x  =  y  <->  ( T `  x )  =  ( T `  y ) ) )
151150biimprd 238 . . . 4  |-  ( ( M  e.  NN  /\  ( x  e.  (
1 ... M )  /\  y  e.  ( 1 ... M ) ) )  ->  ( ( T `  x )  =  ( T `  y )  ->  x  =  y ) )
152151ralrimivva 2971 . . 3  |-  ( M  e.  NN  ->  A. x  e.  ( 1 ... M
) A. y  e.  ( 1 ... M
) ( ( T `
 x )  =  ( T `  y
)  ->  x  =  y ) )
153 dff13 6512 . . 3  |-  ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } )  <->  ( T : ( 1 ... M ) --> ( `' P " { 0 } )  /\  A. x  e.  ( 1 ... M ) A. y  e.  ( 1 ... M ) ( ( T `  x
)  =  ( T `
 y )  ->  x  =  y )
) )
15458, 152, 153sylanbrc 698 . 2  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-> ( `' P " { 0 } ) )
15548simp2d 1074 . . . . . . . . 9  |-  ( M  e.  NN  ->  (deg `  P )  =  M )
156 nnne0 11053 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  =/=  0 )
157155, 156eqnetrd 2861 . . . . . . . 8  |-  ( M  e.  NN  ->  (deg `  P )  =/=  0
)
158 fveq2 6191 . . . . . . . . . 10  |-  ( P  =  0p  -> 
(deg `  P )  =  (deg `  0p
) )
159 dgr0 24018 . . . . . . . . . 10  |-  (deg ` 
0p )  =  0
160158, 159syl6eq 2672 . . . . . . . . 9  |-  ( P  =  0p  -> 
(deg `  P )  =  0 )
161160necon3i 2826 . . . . . . . 8  |-  ( (deg
`  P )  =/=  0  ->  P  =/=  0p )
162157, 161syl 17 . . . . . . 7  |-  ( M  e.  NN  ->  P  =/=  0p )
163 eqid 2622 . . . . . . . 8  |-  ( `' P " { 0 } )  =  ( `' P " { 0 } )
164163fta1 24063 . . . . . . 7  |-  ( ( P  e.  (Poly `  CC )  /\  P  =/=  0p )  -> 
( ( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
16549, 162, 164syl2anc 693 . . . . . 6  |-  ( M  e.  NN  ->  (
( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
166165simpld 475 . . . . 5  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  e.  Fin )
167 f1domg 7975 . . . . 5  |-  ( ( `' P " { 0 } )  e.  Fin  ->  ( T : ( 1 ... M )
-1-1-> ( `' P " { 0 } )  ->  ( 1 ... M )  ~<_  ( `' P " { 0 } ) ) )
168166, 154, 167sylc 65 . . . 4  |-  ( M  e.  NN  ->  (
1 ... M )  ~<_  ( `' P " { 0 } ) )
169165simprd 479 . . . . . 6  |-  ( M  e.  NN  ->  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) )
170 nnnn0 11299 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  NN0 )
171 hashfz1 13134 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
172170, 171syl 17 . . . . . . 7  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... M ) )  =  M )
173155, 172eqtr4d 2659 . . . . . 6  |-  ( M  e.  NN  ->  (deg `  P )  =  (
# `  ( 1 ... M ) ) )
174169, 173breqtrd 4679 . . . . 5  |-  ( M  e.  NN  ->  ( # `
 ( `' P " { 0 } ) )  <_  ( # `  (
1 ... M ) ) )
175 fzfid 12772 . . . . . 6  |-  ( M  e.  NN  ->  (
1 ... M )  e. 
Fin )
176 hashdom 13168 . . . . . 6  |-  ( ( ( `' P " { 0 } )  e.  Fin  /\  (
1 ... M )  e. 
Fin )  ->  (
( # `  ( `' P " { 0 } ) )  <_ 
( # `  ( 1 ... M ) )  <-> 
( `' P " { 0 } )  ~<_  ( 1 ... M
) ) )
177166, 175, 176syl2anc 693 . . . . 5  |-  ( M  e.  NN  ->  (
( # `  ( `' P " { 0 } ) )  <_ 
( # `  ( 1 ... M ) )  <-> 
( `' P " { 0 } )  ~<_  ( 1 ... M
) ) )
178174, 177mpbid 222 . . . 4  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  ~<_  ( 1 ... M ) )
179 sbth 8080 . . . 4  |-  ( ( ( 1 ... M
)  ~<_  ( `' P " { 0 } )  /\  ( `' P " { 0 } )  ~<_  ( 1 ... M
) )  ->  (
1 ... M )  ~~  ( `' P " { 0 } ) )
180168, 178, 179syl2anc 693 . . 3  |-  ( M  e.  NN  ->  (
1 ... M )  ~~  ( `' P " { 0 } ) )
181 f1finf1o 8187 . . 3  |-  ( ( ( 1 ... M
)  ~~  ( `' P " { 0 } )  /\  ( `' P " { 0 } )  e.  Fin )  ->  ( T :
( 1 ... M
) -1-1-> ( `' P " { 0 } )  <-> 
T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) ) )
182180, 166, 181syl2anc 693 . 2  |-  ( M  e.  NN  ->  ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } )  <->  T :
( 1 ... M
)
-1-1-onto-> ( `' P " { 0 } ) ) )
183154, 182mpbid 222 1  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   RR+crp 11832   (,)cioo 12175   ...cfz 12326   ^cexp 12860    _C cbc 13089   #chash 13117   sum_csu 14416   sincsin 14794   cosccos 14795   tanctan 14796   picpi 14797   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  basellem5  24811
  Copyright terms: Public domain W3C validator