MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppcor Structured version   Visualization version   Unicode version

Theorem fsuppcor 8309
Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppcor.0  |-  ( ph  ->  .0.  e.  W )
fsuppcor.z  |-  ( ph  ->  Z  e.  B )
fsuppcor.f  |-  ( ph  ->  F : A --> C )
fsuppcor.g  |-  ( ph  ->  G : B --> D )
fsuppcor.s  |-  ( ph  ->  C  C_  B )
fsuppcor.a  |-  ( ph  ->  A  e.  U )
fsuppcor.b  |-  ( ph  ->  B  e.  V )
fsuppcor.n  |-  ( ph  ->  F finSupp  Z )
fsuppcor.i  |-  ( ph  ->  ( G `  Z
)  =  .0.  )
Assertion
Ref Expression
fsuppcor  |-  ( ph  ->  ( G  o.  F
) finSupp  .0.  )

Proof of Theorem fsuppcor
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fsuppcor.g . . . 4  |-  ( ph  ->  G : B --> D )
2 ffun 6048 . . . 4  |-  ( G : B --> D  ->  Fun  G )
31, 2syl 17 . . 3  |-  ( ph  ->  Fun  G )
4 fsuppcor.f . . . 4  |-  ( ph  ->  F : A --> C )
5 ffun 6048 . . . 4  |-  ( F : A --> C  ->  Fun  F )
64, 5syl 17 . . 3  |-  ( ph  ->  Fun  F )
7 funco 5928 . . 3  |-  ( ( Fun  G  /\  Fun  F )  ->  Fun  ( G  o.  F ) )
83, 6, 7syl2anc 693 . 2  |-  ( ph  ->  Fun  ( G  o.  F ) )
9 fsuppcor.n . . . 4  |-  ( ph  ->  F finSupp  Z )
109fsuppimpd 8282 . . 3  |-  ( ph  ->  ( F supp  Z )  e.  Fin )
11 fsuppcor.s . . . . . 6  |-  ( ph  ->  C  C_  B )
121, 11fssresd 6071 . . . . 5  |-  ( ph  ->  ( G  |`  C ) : C --> D )
13 fco2 6059 . . . . 5  |-  ( ( ( G  |`  C ) : C --> D  /\  F : A --> C )  ->  ( G  o.  F ) : A --> D )
1412, 4, 13syl2anc 693 . . . 4  |-  ( ph  ->  ( G  o.  F
) : A --> D )
15 eldifi 3732 . . . . . 6  |-  ( x  e.  ( A  \ 
( F supp  Z )
)  ->  x  e.  A )
16 fvco3 6275 . . . . . 6  |-  ( ( F : A --> C  /\  x  e.  A )  ->  ( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
174, 15, 16syl2an 494 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  \  ( F supp  Z ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
18 ssid 3624 . . . . . . . 8  |-  ( F supp 
Z )  C_  ( F supp  Z )
1918a1i 11 . . . . . . 7  |-  ( ph  ->  ( F supp  Z ) 
C_  ( F supp  Z
) )
20 fsuppcor.a . . . . . . 7  |-  ( ph  ->  A  e.  U )
21 fsuppcor.z . . . . . . 7  |-  ( ph  ->  Z  e.  B )
224, 19, 20, 21suppssr 7326 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A  \  ( F supp  Z ) ) )  ->  ( F `  x )  =  Z )
2322fveq2d 6195 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  \  ( F supp  Z ) ) )  ->  ( G `  ( F `  x ) )  =  ( G `
 Z ) )
24 fsuppcor.i . . . . . 6  |-  ( ph  ->  ( G `  Z
)  =  .0.  )
2524adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  \  ( F supp  Z ) ) )  ->  ( G `  Z )  =  .0.  )
2617, 23, 253eqtrd 2660 . . . 4  |-  ( (
ph  /\  x  e.  ( A  \  ( F supp  Z ) ) )  ->  ( ( G  o.  F ) `  x )  =  .0.  )
2714, 26suppss 7325 . . 3  |-  ( ph  ->  ( ( G  o.  F ) supp  .0.  )  C_  ( F supp  Z ) )
28 ssfi 8180 . . 3  |-  ( ( ( F supp  Z )  e.  Fin  /\  (
( G  o.  F
) supp  .0.  )  C_  ( F supp  Z )
)  ->  ( ( G  o.  F ) supp  .0.  )  e.  Fin )
2910, 27, 28syl2anc 693 . 2  |-  ( ph  ->  ( ( G  o.  F ) supp  .0.  )  e.  Fin )
30 fsuppcor.b . . . . 5  |-  ( ph  ->  B  e.  V )
31 fex 6490 . . . . 5  |-  ( ( G : B --> D  /\  B  e.  V )  ->  G  e.  _V )
321, 30, 31syl2anc 693 . . . 4  |-  ( ph  ->  G  e.  _V )
33 fex 6490 . . . . 5  |-  ( ( F : A --> C  /\  A  e.  U )  ->  F  e.  _V )
344, 20, 33syl2anc 693 . . . 4  |-  ( ph  ->  F  e.  _V )
35 coexg 7117 . . . 4  |-  ( ( G  e.  _V  /\  F  e.  _V )  ->  ( G  o.  F
)  e.  _V )
3632, 34, 35syl2anc 693 . . 3  |-  ( ph  ->  ( G  o.  F
)  e.  _V )
37 fsuppcor.0 . . 3  |-  ( ph  ->  .0.  e.  W )
38 isfsupp 8279 . . 3  |-  ( ( ( G  o.  F
)  e.  _V  /\  .0.  e.  W )  -> 
( ( G  o.  F ) finSupp  .0.  <->  ( Fun  ( G  o.  F
)  /\  ( ( G  o.  F ) supp  .0.  )  e.  Fin ) ) )
3936, 37, 38syl2anc 693 . 2  |-  ( ph  ->  ( ( G  o.  F ) finSupp  .0.  <->  ( Fun  ( G  o.  F
)  /\  ( ( G  o.  F ) supp  .0.  )  e.  Fin ) ) )
408, 29, 39mpbir2and 957 1  |-  ( ph  ->  ( G  o.  F
) finSupp  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   class class class wbr 4653    |` cres 5116    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-er 7742  df-en 7956  df-fin 7959  df-fsupp 8276
This theorem is referenced by:  mapfienlem1  8310  mapfienlem2  8311  cpmadumatpolylem2  20687
  Copyright terms: Public domain W3C validator