| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppcor | Structured version Visualization version Unicode version | ||
| Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppcor.0 |
|
| fsuppcor.z |
|
| fsuppcor.f |
|
| fsuppcor.g |
|
| fsuppcor.s |
|
| fsuppcor.a |
|
| fsuppcor.b |
|
| fsuppcor.n |
|
| fsuppcor.i |
|
| Ref | Expression |
|---|---|
| fsuppcor |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppcor.g |
. . . 4
| |
| 2 | ffun 6048 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | fsuppcor.f |
. . . 4
| |
| 5 | ffun 6048 |
. . . 4
| |
| 6 | 4, 5 | syl 17 |
. . 3
|
| 7 | funco 5928 |
. . 3
| |
| 8 | 3, 6, 7 | syl2anc 693 |
. 2
|
| 9 | fsuppcor.n |
. . . 4
| |
| 10 | 9 | fsuppimpd 8282 |
. . 3
|
| 11 | fsuppcor.s |
. . . . . 6
| |
| 12 | 1, 11 | fssresd 6071 |
. . . . 5
|
| 13 | fco2 6059 |
. . . . 5
| |
| 14 | 12, 4, 13 | syl2anc 693 |
. . . 4
|
| 15 | eldifi 3732 |
. . . . . 6
| |
| 16 | fvco3 6275 |
. . . . . 6
| |
| 17 | 4, 15, 16 | syl2an 494 |
. . . . 5
|
| 18 | ssid 3624 |
. . . . . . . 8
| |
| 19 | 18 | a1i 11 |
. . . . . . 7
|
| 20 | fsuppcor.a |
. . . . . . 7
| |
| 21 | fsuppcor.z |
. . . . . . 7
| |
| 22 | 4, 19, 20, 21 | suppssr 7326 |
. . . . . 6
|
| 23 | 22 | fveq2d 6195 |
. . . . 5
|
| 24 | fsuppcor.i |
. . . . . 6
| |
| 25 | 24 | adantr 481 |
. . . . 5
|
| 26 | 17, 23, 25 | 3eqtrd 2660 |
. . . 4
|
| 27 | 14, 26 | suppss 7325 |
. . 3
|
| 28 | ssfi 8180 |
. . 3
| |
| 29 | 10, 27, 28 | syl2anc 693 |
. 2
|
| 30 | fsuppcor.b |
. . . . 5
| |
| 31 | fex 6490 |
. . . . 5
| |
| 32 | 1, 30, 31 | syl2anc 693 |
. . . 4
|
| 33 | fex 6490 |
. . . . 5
| |
| 34 | 4, 20, 33 | syl2anc 693 |
. . . 4
|
| 35 | coexg 7117 |
. . . 4
| |
| 36 | 32, 34, 35 | syl2anc 693 |
. . 3
|
| 37 | fsuppcor.0 |
. . 3
| |
| 38 | isfsupp 8279 |
. . 3
| |
| 39 | 36, 37, 38 | syl2anc 693 |
. 2
|
| 40 | 8, 29, 39 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-supp 7296 df-er 7742 df-en 7956 df-fin 7959 df-fsupp 8276 |
| This theorem is referenced by: mapfienlem1 8310 mapfienlem2 8311 cpmadumatpolylem2 20687 |
| Copyright terms: Public domain | W3C validator |