MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssr Structured version   Visualization version   Unicode version

Theorem suppssr 7326
Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssr.f  |-  ( ph  ->  F : A --> B )
suppssr.n  |-  ( ph  ->  ( F supp  Z ) 
C_  W )
suppssr.a  |-  ( ph  ->  A  e.  V )
suppssr.z  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
suppssr  |-  ( (
ph  /\  X  e.  ( A  \  W ) )  ->  ( F `  X )  =  Z )

Proof of Theorem suppssr
StepHypRef Expression
1 eldif 3584 . 2  |-  ( X  e.  ( A  \  W )  <->  ( X  e.  A  /\  -.  X  e.  W ) )
2 fvex 6201 . . . . . 6  |-  ( F `
 X )  e. 
_V
3 eldifsn 4317 . . . . . 6  |-  ( ( F `  X )  e.  ( _V  \  { Z } )  <->  ( ( F `  X )  e.  _V  /\  ( F `
 X )  =/= 
Z ) )
42, 3mpbiran 953 . . . . 5  |-  ( ( F `  X )  e.  ( _V  \  { Z } )  <->  ( F `  X )  =/=  Z
)
5 suppssr.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> B )
6 ffn 6045 . . . . . . . . . 10  |-  ( F : A --> B  ->  F  Fn  A )
75, 6syl 17 . . . . . . . . 9  |-  ( ph  ->  F  Fn  A )
8 suppssr.a . . . . . . . . 9  |-  ( ph  ->  A  e.  V )
9 suppssr.z . . . . . . . . 9  |-  ( ph  ->  Z  e.  U )
10 elsuppfn 7303 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  A  e.  V  /\  Z  e.  U )  ->  ( X  e.  ( F supp  Z )  <->  ( X  e.  A  /\  ( F `  X )  =/=  Z ) ) )
117, 8, 9, 10syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( X  e.  ( F supp  Z )  <->  ( X  e.  A  /\  ( F `  X )  =/=  Z ) ) )
12 ibar 525 . . . . . . . . . . 11  |-  ( ( F `  X )  e.  _V  ->  (
( F `  X
)  =/=  Z  <->  ( ( F `  X )  e.  _V  /\  ( F `
 X )  =/= 
Z ) ) )
132, 12mp1i 13 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  A )  ->  (
( F `  X
)  =/=  Z  <->  ( ( F `  X )  e.  _V  /\  ( F `
 X )  =/= 
Z ) ) )
1413, 3syl6bbr 278 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  A )  ->  (
( F `  X
)  =/=  Z  <->  ( F `  X )  e.  ( _V  \  { Z } ) ) )
1514pm5.32da 673 . . . . . . . 8  |-  ( ph  ->  ( ( X  e.  A  /\  ( F `
 X )  =/= 
Z )  <->  ( X  e.  A  /\  ( F `  X )  e.  ( _V  \  { Z } ) ) ) )
1611, 15bitrd 268 . . . . . . 7  |-  ( ph  ->  ( X  e.  ( F supp  Z )  <->  ( X  e.  A  /\  ( F `  X )  e.  ( _V  \  { Z } ) ) ) )
17 suppssr.n . . . . . . . 8  |-  ( ph  ->  ( F supp  Z ) 
C_  W )
1817sseld 3602 . . . . . . 7  |-  ( ph  ->  ( X  e.  ( F supp  Z )  ->  X  e.  W )
)
1916, 18sylbird 250 . . . . . 6  |-  ( ph  ->  ( ( X  e.  A  /\  ( F `
 X )  e.  ( _V  \  { Z } ) )  ->  X  e.  W )
)
2019expdimp 453 . . . . 5  |-  ( (
ph  /\  X  e.  A )  ->  (
( F `  X
)  e.  ( _V 
\  { Z }
)  ->  X  e.  W ) )
214, 20syl5bir 233 . . . 4  |-  ( (
ph  /\  X  e.  A )  ->  (
( F `  X
)  =/=  Z  ->  X  e.  W )
)
2221necon1bd 2812 . . 3  |-  ( (
ph  /\  X  e.  A )  ->  ( -.  X  e.  W  ->  ( F `  X
)  =  Z ) )
2322impr 649 . 2  |-  ( (
ph  /\  ( X  e.  A  /\  -.  X  e.  W ) )  -> 
( F `  X
)  =  Z )
241, 23sylan2b 492 1  |-  ( (
ph  /\  X  e.  ( A  \  W ) )  ->  ( F `  X )  =  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  fsuppmptif  8305  fsuppco2  8308  fsuppcor  8309  cantnfp1lem1  8575  cantnfp1lem3  8577  cantnflem1  8586  cnfcom2lem  8598  gsumval3  18308  gsumcllem  18309  gsumzaddlem  18321  gsumzmhm  18337  gsumpt  18361  gsum2dlem1  18369  gsum2dlem2  18370  gsum2d  18371  dprdfinv  18418  dprdfadd  18419  dmdprdsplitlem  18436  dpjidcl  18457  gsumdixp  18609  lcomfsupp  18903  psrbaglesupp  19368  psrbagaddcl  19370  psrbaglefi  19372  mplsubglem  19434  mpllsslem  19435  mplsubrglem  19439  mplmonmul  19464  mplcoe1  19465  mplcoe5  19468  mplbas2  19470  evlslem4  19508  evlslem2  19512  uvcresum  20132  frlmsslsp  20135  rrxcph  23180  rrxmval  23188  rrxmetlem  23190  rrxmet  23191  rrxdstprj1  23192  deg1mul3le  23876  eulerpartlemb  30430
  Copyright terms: Public domain W3C validator