| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexval | Structured version Visualization version Unicode version | ||
| Description: Value of the exponent of a group. (Contributed by Mario Carneiro, 23-Apr-2016.) (Revised by AV, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| gexval.1 |
|
| gexval.2 |
|
| gexval.3 |
|
| gexval.4 |
|
| gexval.i |
|
| Ref | Expression |
|---|---|
| gexval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexval.4 |
. 2
| |
| 2 | df-gex 17949 |
. . . 4
| |
| 3 | 2 | a1i 11 |
. . 3
|
| 4 | nnex 11026 |
. . . . . 6
| |
| 5 | 4 | rabex 4813 |
. . . . 5
|
| 6 | 5 | a1i 11 |
. . . 4
|
| 7 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 9 | gexval.1 |
. . . . . . . . . . . 12
| |
| 10 | 8, 9 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 11 | 7 | fveq2d 6195 |
. . . . . . . . . . . . . 14
|
| 12 | gexval.2 |
. . . . . . . . . . . . . 14
| |
| 13 | 11, 12 | syl6eqr 2674 |
. . . . . . . . . . . . 13
|
| 14 | 13 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 15 | 7 | fveq2d 6195 |
. . . . . . . . . . . . 13
|
| 16 | gexval.3 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | syl6eqr 2674 |
. . . . . . . . . . . 12
|
| 18 | 14, 17 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 19 | 10, 18 | raleqbidv 3152 |
. . . . . . . . . 10
|
| 20 | 19 | rabbidv 3189 |
. . . . . . . . 9
|
| 21 | gexval.i |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl6eqr 2674 |
. . . . . . . 8
|
| 23 | 22 | eqeq2d 2632 |
. . . . . . 7
|
| 24 | 23 | biimpa 501 |
. . . . . 6
|
| 25 | 24 | eqeq1d 2624 |
. . . . 5
|
| 26 | 24 | infeq1d 8383 |
. . . . 5
|
| 27 | 25, 26 | ifbieq2d 4111 |
. . . 4
|
| 28 | 6, 27 | csbied 3560 |
. . 3
|
| 29 | elex 3212 |
. . 3
| |
| 30 | c0ex 10034 |
. . . . 5
| |
| 31 | ltso 10118 |
. . . . . 6
| |
| 32 | 31 | infex 8399 |
. . . . 5
|
| 33 | 30, 32 | ifex 4156 |
. . . 4
|
| 34 | 33 | a1i 11 |
. . 3
|
| 35 | 3, 28, 29, 34 | fvmptd 6288 |
. 2
|
| 36 | 1, 35 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-nn 11021 df-gex 17949 |
| This theorem is referenced by: gexlem1 17994 gexlem2 17997 |
| Copyright terms: Public domain | W3C validator |