MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indcardi Structured version   Visualization version   Unicode version

Theorem indcardi 8864
Description: Indirect strong induction on the cardinality of a finite or numerable set. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
indcardi.a  |-  ( ph  ->  A  e.  V )
indcardi.b  |-  ( ph  ->  T  e.  dom  card )
indcardi.c  |-  ( (
ph  /\  R  ~<_  T  /\  A. y ( S  ~<  R  ->  ch ) )  ->  ps )
indcardi.d  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
indcardi.e  |-  ( x  =  A  ->  ( ps 
<->  th ) )
indcardi.f  |-  ( x  =  y  ->  R  =  S )
indcardi.g  |-  ( x  =  A  ->  R  =  T )
Assertion
Ref Expression
indcardi  |-  ( ph  ->  th )
Distinct variable groups:    x, y, T    x, A    x, S    ch, x    ph, x, y    th, x    y, R    ps, y
Allowed substitution hints:    ps( x)    ch( y)    th( y)    A( y)    R( x)    S( y)    V( x, y)

Proof of Theorem indcardi
StepHypRef Expression
1 indcardi.b . . 3  |-  ( ph  ->  T  e.  dom  card )
2 domrefg 7990 . . 3  |-  ( T  e.  dom  card  ->  T  ~<_  T )
31, 2syl 17 . 2  |-  ( ph  ->  T  ~<_  T )
4 indcardi.a . . 3  |-  ( ph  ->  A  e.  V )
5 cardon 8770 . . . 4  |-  ( card `  T )  e.  On
65a1i 11 . . 3  |-  ( ph  ->  ( card `  T
)  e.  On )
7 simpl1 1064 . . . . 5  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  A. y ( ( card `  S
)  e.  ( card `  R )  ->  ( S  ~<_  T  ->  ch ) ) )  /\  R  ~<_  T )  ->  ph )
8 simpr 477 . . . . 5  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  A. y ( ( card `  S
)  e.  ( card `  R )  ->  ( S  ~<_  T  ->  ch ) ) )  /\  R  ~<_  T )  ->  R  ~<_  T )
9 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  S  ~<  R )
10 simpl1 1064 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  ph )
1110, 1syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  T  e.  dom  card )
12 sdomdom 7983 . . . . . . . . . . . . . . . . 17  |-  ( S 
~<  R  ->  S  ~<_  R )
1312adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  S  ~<_  R )
14 simpl3 1066 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  R  ~<_  T )
15 domtr 8009 . . . . . . . . . . . . . . . 16  |-  ( ( S  ~<_  R  /\  R  ~<_  T )  ->  S  ~<_  T )
1613, 14, 15syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  S  ~<_  T )
17 numdom 8861 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  card  /\  S  ~<_  T )  ->  S  e.  dom  card )
1811, 16, 17syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  S  e.  dom  card )
19 numdom 8861 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  card  /\  R  ~<_  T )  ->  R  e.  dom  card )
2011, 14, 19syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  R  e.  dom  card )
21 cardsdom2 8814 . . . . . . . . . . . . . 14  |-  ( ( S  e.  dom  card  /\  R  e.  dom  card )  ->  ( ( card `  S )  e.  (
card `  R )  <->  S 
~<  R ) )
2218, 20, 21syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  ( ( card `  S )  e.  (
card `  R )  <->  S 
~<  R ) )
239, 22mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  ( card `  S
)  e.  ( card `  R ) )
24 id 22 . . . . . . . . . . . . 13  |-  ( ( ( card `  S
)  e.  ( card `  R )  ->  ( S  ~<_  T  ->  ch ) )  ->  (
( card `  S )  e.  ( card `  R
)  ->  ( S  ~<_  T  ->  ch ) ) )
2524com3l 89 . . . . . . . . . . . 12  |-  ( (
card `  S )  e.  ( card `  R
)  ->  ( S  ~<_  T  ->  ( ( (
card `  S )  e.  ( card `  R
)  ->  ( S  ~<_  T  ->  ch ) )  ->  ch ) ) )
2623, 16, 25sylc 65 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  /\  S  ~<  R )  ->  ( ( (
card `  S )  e.  ( card `  R
)  ->  ( S  ~<_  T  ->  ch ) )  ->  ch ) )
2726ex 450 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  ->  ( S  ~<  R  ->  ( ( (
card `  S )  e.  ( card `  R
)  ->  ( S  ~<_  T  ->  ch ) )  ->  ch ) ) )
2827com23 86 . . . . . . . . 9  |-  ( (
ph  /\  ( ( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  ->  ( ( (
card `  S )  e.  ( card `  R
)  ->  ( S  ~<_  T  ->  ch ) )  ->  ( S  ~<  R  ->  ch ) ) )
2928alimdv 1845 . . . . . . . 8  |-  ( (
ph  /\  ( ( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  R  ~<_  T )  ->  ( A. y
( ( card `  S
)  e.  ( card `  R )  ->  ( S  ~<_  T  ->  ch ) )  ->  A. y
( S  ~<  R  ->  ch ) ) )
30293exp 1264 . . . . . . 7  |-  ( ph  ->  ( ( ( card `  R )  e.  On  /\  ( card `  R
)  C_  ( card `  T ) )  -> 
( R  ~<_  T  -> 
( A. y ( ( card `  S
)  e.  ( card `  R )  ->  ( S  ~<_  T  ->  ch ) )  ->  A. y
( S  ~<  R  ->  ch ) ) ) ) )
3130com34 91 . . . . . 6  |-  ( ph  ->  ( ( ( card `  R )  e.  On  /\  ( card `  R
)  C_  ( card `  T ) )  -> 
( A. y ( ( card `  S
)  e.  ( card `  R )  ->  ( S  ~<_  T  ->  ch ) )  ->  ( R  ~<_  T  ->  A. y
( S  ~<  R  ->  ch ) ) ) ) )
32313imp1 1280 . . . . 5  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  A. y ( ( card `  S
)  e.  ( card `  R )  ->  ( S  ~<_  T  ->  ch ) ) )  /\  R  ~<_  T )  ->  A. y ( S  ~<  R  ->  ch ) )
33 indcardi.c . . . . 5  |-  ( (
ph  /\  R  ~<_  T  /\  A. y ( S  ~<  R  ->  ch ) )  ->  ps )
347, 8, 32, 33syl3anc 1326 . . . 4  |-  ( ( ( ph  /\  (
( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  A. y ( ( card `  S
)  e.  ( card `  R )  ->  ( S  ~<_  T  ->  ch ) ) )  /\  R  ~<_  T )  ->  ps )
3534ex 450 . . 3  |-  ( (
ph  /\  ( ( card `  R )  e.  On  /\  ( card `  R )  C_  ( card `  T ) )  /\  A. y ( ( card `  S
)  e.  ( card `  R )  ->  ( S  ~<_  T  ->  ch ) ) )  -> 
( R  ~<_  T  ->  ps ) )
36 indcardi.f . . . . 5  |-  ( x  =  y  ->  R  =  S )
3736breq1d 4663 . . . 4  |-  ( x  =  y  ->  ( R  ~<_  T  <->  S  ~<_  T ) )
38 indcardi.d . . . 4  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
3937, 38imbi12d 334 . . 3  |-  ( x  =  y  ->  (
( R  ~<_  T  ->  ps )  <->  ( S  ~<_  T  ->  ch ) ) )
40 indcardi.g . . . . 5  |-  ( x  =  A  ->  R  =  T )
4140breq1d 4663 . . . 4  |-  ( x  =  A  ->  ( R  ~<_  T  <->  T  ~<_  T ) )
42 indcardi.e . . . 4  |-  ( x  =  A  ->  ( ps 
<->  th ) )
4341, 42imbi12d 334 . . 3  |-  ( x  =  A  ->  (
( R  ~<_  T  ->  ps )  <->  ( T  ~<_  T  ->  th ) ) )
4436fveq2d 6195 . . 3  |-  ( x  =  y  ->  ( card `  R )  =  ( card `  S
) )
4540fveq2d 6195 . . 3  |-  ( x  =  A  ->  ( card `  R )  =  ( card `  T
) )
464, 6, 35, 39, 43, 44, 45tfisi 7058 . 2  |-  ( ph  ->  ( T  ~<_  T  ->  th ) )
473, 46mpd 15 1  |-  ( ph  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990    C_ wss 3574   class class class wbr 4653   dom cdm 5114   Oncon0 5723   ` cfv 5888    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by:  uzindi  12781  symggen  17890
  Copyright terms: Public domain W3C validator