| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indcardi | Structured version Visualization version Unicode version | ||
| Description: Indirect strong induction on the cardinality of a finite or numerable set. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| indcardi.a |
|
| indcardi.b |
|
| indcardi.c |
|
| indcardi.d |
|
| indcardi.e |
|
| indcardi.f |
|
| indcardi.g |
|
| Ref | Expression |
|---|---|
| indcardi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indcardi.b |
. . 3
| |
| 2 | domrefg 7990 |
. . 3
| |
| 3 | 1, 2 | syl 17 |
. 2
|
| 4 | indcardi.a |
. . 3
| |
| 5 | cardon 8770 |
. . . 4
| |
| 6 | 5 | a1i 11 |
. . 3
|
| 7 | simpl1 1064 |
. . . . 5
| |
| 8 | simpr 477 |
. . . . 5
| |
| 9 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 10 | simpl1 1064 |
. . . . . . . . . . . . . . . 16
| |
| 11 | 10, 1 | syl 17 |
. . . . . . . . . . . . . . 15
|
| 12 | sdomdom 7983 |
. . . . . . . . . . . . . . . . 17
| |
| 13 | 12 | adantl 482 |
. . . . . . . . . . . . . . . 16
|
| 14 | simpl3 1066 |
. . . . . . . . . . . . . . . 16
| |
| 15 | domtr 8009 |
. . . . . . . . . . . . . . . 16
| |
| 16 | 13, 14, 15 | syl2anc 693 |
. . . . . . . . . . . . . . 15
|
| 17 | numdom 8861 |
. . . . . . . . . . . . . . 15
| |
| 18 | 11, 16, 17 | syl2anc 693 |
. . . . . . . . . . . . . 14
|
| 19 | numdom 8861 |
. . . . . . . . . . . . . . 15
| |
| 20 | 11, 14, 19 | syl2anc 693 |
. . . . . . . . . . . . . 14
|
| 21 | cardsdom2 8814 |
. . . . . . . . . . . . . 14
| |
| 22 | 18, 20, 21 | syl2anc 693 |
. . . . . . . . . . . . 13
|
| 23 | 9, 22 | mpbird 247 |
. . . . . . . . . . . 12
|
| 24 | id 22 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | com3l 89 |
. . . . . . . . . . . 12
|
| 26 | 23, 16, 25 | sylc 65 |
. . . . . . . . . . 11
|
| 27 | 26 | ex 450 |
. . . . . . . . . 10
|
| 28 | 27 | com23 86 |
. . . . . . . . 9
|
| 29 | 28 | alimdv 1845 |
. . . . . . . 8
|
| 30 | 29 | 3exp 1264 |
. . . . . . 7
|
| 31 | 30 | com34 91 |
. . . . . 6
|
| 32 | 31 | 3imp1 1280 |
. . . . 5
|
| 33 | indcardi.c |
. . . . 5
| |
| 34 | 7, 8, 32, 33 | syl3anc 1326 |
. . . 4
|
| 35 | 34 | ex 450 |
. . 3
|
| 36 | indcardi.f |
. . . . 5
| |
| 37 | 36 | breq1d 4663 |
. . . 4
|
| 38 | indcardi.d |
. . . 4
| |
| 39 | 37, 38 | imbi12d 334 |
. . 3
|
| 40 | indcardi.g |
. . . . 5
| |
| 41 | 40 | breq1d 4663 |
. . . 4
|
| 42 | indcardi.e |
. . . 4
| |
| 43 | 41, 42 | imbi12d 334 |
. . 3
|
| 44 | 36 | fveq2d 6195 |
. . 3
|
| 45 | 40 | fveq2d 6195 |
. . 3
|
| 46 | 4, 6, 35, 39, 43, 44, 45 | tfisi 7058 |
. 2
|
| 47 | 3, 46 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-wrecs 7407 df-recs 7468 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-card 8765 |
| This theorem is referenced by: uzindi 12781 symggen 17890 |
| Copyright terms: Public domain | W3C validator |