MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcdaabs Structured version   Visualization version   Unicode version

Theorem infcdaabs 9028
Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infcdaabs  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  +c  B )  ~~  A )

Proof of Theorem infcdaabs
StepHypRef Expression
1 cdadom2 9009 . . . . . 6  |-  ( B  ~<_  A  ->  ( A  +c  B )  ~<_  ( A  +c  A ) )
213ad2ant3 1084 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  +c  B )  ~<_  ( A  +c  A ) )
3 simp1 1061 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  A  e.  dom  card )
4 xp2cda 9002 . . . . . 6  |-  ( A  e.  dom  card  ->  ( A  X.  2o )  =  ( A  +c  A ) )
53, 4syl 17 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  X.  2o )  =  ( A  +c  A
) )
62, 5breqtrrd 4681 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  +c  B )  ~<_  ( A  X.  2o ) )
7 2onn 7720 . . . . . . 7  |-  2o  e.  om
8 nnsdom 8551 . . . . . . 7  |-  ( 2o  e.  om  ->  2o  ~<  om )
9 sdomdom 7983 . . . . . . 7  |-  ( 2o 
~<  om  ->  2o  ~<_  om )
107, 8, 9mp2b 10 . . . . . 6  |-  2o  ~<_  om
11 simp2 1062 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  om  ~<_  A )
12 domtr 8009 . . . . . 6  |-  ( ( 2o  ~<_  om  /\  om  ~<_  A )  ->  2o  ~<_  A )
1310, 11, 12sylancr 695 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  2o  ~<_  A )
14 xpdom2g 8056 . . . . 5  |-  ( ( A  e.  dom  card  /\  2o  ~<_  A )  -> 
( A  X.  2o )  ~<_  ( A  X.  A ) )
153, 13, 14syl2anc 693 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  X.  2o )  ~<_  ( A  X.  A ) )
16 domtr 8009 . . . 4  |-  ( ( ( A  +c  B
)  ~<_  ( A  X.  2o )  /\  ( A  X.  2o )  ~<_  ( A  X.  A ) )  ->  ( A  +c  B )  ~<_  ( A  X.  A ) )
176, 15, 16syl2anc 693 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  +c  B )  ~<_  ( A  X.  A ) )
18 infxpidm2 8840 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )
19183adant3 1081 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  X.  A )  ~~  A )
20 domentr 8015 . . 3  |-  ( ( ( A  +c  B
)  ~<_  ( A  X.  A )  /\  ( A  X.  A )  ~~  A )  ->  ( A  +c  B )  ~<_  A )
2117, 19, 20syl2anc 693 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  +c  B )  ~<_  A )
22 reldom 7961 . . . . 5  |-  Rel  ~<_
2322brrelexi 5158 . . . 4  |-  ( B  ~<_  A  ->  B  e.  _V )
24233ad2ant3 1084 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  B  e.  _V )
25 cdadom3 9010 . . 3  |-  ( ( A  e.  dom  card  /\  B  e.  _V )  ->  A  ~<_  ( A  +c  B ) )
263, 24, 25syl2anc 693 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  A  ~<_  ( A  +c  B
) )
27 sbth 8080 . 2  |-  ( ( ( A  +c  B
)  ~<_  A  /\  A  ~<_  ( A  +c  B
) )  ->  ( A  +c  B )  ~~  A )
2821, 26, 27syl2anc 693 1  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  +c  B )  ~~  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653    X. cxp 5112   dom cdm 5114  (class class class)co 6650   omcom 7065   2oc2o 7554    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990
This theorem is referenced by:  infunabs  9029  infcda  9030  infdif  9031
  Copyright terms: Public domain W3C validator