MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom1 Structured version   Visualization version   Unicode version

Theorem infunsdom1 9035
Description: The union of two sets that are strictly dominated by the infinite set  X is also dominated by  X. This version of infunsdom 9036 assumes additionally that  A is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom1  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  ->  ( A  u.  B )  ~<  X )

Proof of Theorem infunsdom1
StepHypRef Expression
1 simprl 794 . . . . 5  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  ->  A  ~<_  B )
2 domsdomtr 8095 . . . . 5  |-  ( ( A  ~<_  B  /\  B  ~<  om )  ->  A  ~<  om )
31, 2sylan 488 . . . 4  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  B  ~<  om )  ->  A  ~<  om )
4 unfi2 8229 . . . 4  |-  ( ( A  ~<  om  /\  B  ~<  om )  ->  ( A  u.  B )  ~<  om )
53, 4sylancom 701 . . 3  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  B  ~<  om )  ->  ( A  u.  B )  ~<  om )
6 simpllr 799 . . 3  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  B  ~<  om )  ->  om  ~<_  X )
7 sdomdomtr 8093 . . 3  |-  ( ( ( A  u.  B
)  ~<  om  /\  om  ~<_  X )  ->  ( A  u.  B )  ~<  X )
85, 6, 7syl2anc 693 . 2  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  B  ~<  om )  ->  ( A  u.  B )  ~<  X )
9 omelon 8543 . . . . . 6  |-  om  e.  On
10 onenon 8775 . . . . . 6  |-  ( om  e.  On  ->  om  e.  dom  card )
119, 10ax-mp 5 . . . . 5  |-  om  e.  dom  card
12 simpll 790 . . . . . 6  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  ->  X  e.  dom  card )
13 sdomdom 7983 . . . . . . 7  |-  ( B 
~<  X  ->  B  ~<_  X )
1413ad2antll 765 . . . . . 6  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  ->  B  ~<_  X )
15 numdom 8861 . . . . . 6  |-  ( ( X  e.  dom  card  /\  B  ~<_  X )  ->  B  e.  dom  card )
1612, 14, 15syl2anc 693 . . . . 5  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  ->  B  e.  dom  card )
17 domtri2 8815 . . . . 5  |-  ( ( om  e.  dom  card  /\  B  e.  dom  card )  ->  ( om  ~<_  B  <->  -.  B  ~<  om ) )
1811, 16, 17sylancr 695 . . . 4  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  ->  ( om  ~<_  B  <->  -.  B  ~<  om ) )
1918biimpar 502 . . 3  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  -.  B  ~<  om )  ->  om  ~<_  B )
20 uncom 3757 . . . . 5  |-  ( A  u.  B )  =  ( B  u.  A
)
2116adantr 481 . . . . . 6  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  om  ~<_  B )  ->  B  e.  dom  card )
22 simpr 477 . . . . . 6  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  om  ~<_  B )  ->  om  ~<_  B )
231adantr 481 . . . . . 6  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  om  ~<_  B )  ->  A  ~<_  B )
24 infunabs 9029 . . . . . 6  |-  ( ( B  e.  dom  card  /\ 
om  ~<_  B  /\  A  ~<_  B )  ->  ( B  u.  A )  ~~  B )
2521, 22, 23, 24syl3anc 1326 . . . . 5  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  om  ~<_  B )  ->  ( B  u.  A )  ~~  B
)
2620, 25syl5eqbr 4688 . . . 4  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  om  ~<_  B )  ->  ( A  u.  B )  ~~  B
)
27 simplrr 801 . . . 4  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  om  ~<_  B )  ->  B  ~<  X )
28 ensdomtr 8096 . . . 4  |-  ( ( ( A  u.  B
)  ~~  B  /\  B  ~<  X )  -> 
( A  u.  B
)  ~<  X )
2926, 27, 28syl2anc 693 . . 3  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  om  ~<_  B )  ->  ( A  u.  B )  ~<  X )
3019, 29syldan 487 . 2  |-  ( ( ( ( X  e. 
dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  /\  -.  B  ~<  om )  ->  ( A  u.  B )  ~<  X )
318, 30pm2.61dan 832 1  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  ( A  ~<_  B  /\  B  ~<  X ) )  ->  ( A  u.  B )  ~<  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    u. cun 3572   class class class wbr 4653   dom cdm 5114   Oncon0 5723   omcom 7065    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990
This theorem is referenced by:  infunsdom  9036
  Copyright terms: Public domain W3C validator