MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcinv Structured version   Visualization version   Unicode version

Theorem setcinv 16740
Description: An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c  |-  C  =  ( SetCat `  U )
setcmon.u  |-  ( ph  ->  U  e.  V )
setcmon.x  |-  ( ph  ->  X  e.  U )
setcmon.y  |-  ( ph  ->  Y  e.  U )
setcinv.n  |-  N  =  (Inv `  C )
Assertion
Ref Expression
setcinv  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F : X -1-1-onto-> Y  /\  G  =  `' F ) ) )

Proof of Theorem setcinv
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  C )  =  (
Base `  C )
2 setcinv.n . . 3  |-  N  =  (Inv `  C )
3 setcmon.u . . . 4  |-  ( ph  ->  U  e.  V )
4 setcmon.c . . . . 5  |-  C  =  ( SetCat `  U )
54setccat 16735 . . . 4  |-  ( U  e.  V  ->  C  e.  Cat )
63, 5syl 17 . . 3  |-  ( ph  ->  C  e.  Cat )
7 setcmon.x . . . 4  |-  ( ph  ->  X  e.  U )
84, 3setcbas 16728 . . . 4  |-  ( ph  ->  U  =  ( Base `  C ) )
97, 8eleqtrd 2703 . . 3  |-  ( ph  ->  X  e.  ( Base `  C ) )
10 setcmon.y . . . 4  |-  ( ph  ->  Y  e.  U )
1110, 8eleqtrd 2703 . . 3  |-  ( ph  ->  Y  e.  ( Base `  C ) )
12 eqid 2622 . . 3  |-  (Sect `  C )  =  (Sect `  C )
131, 2, 6, 9, 11, 12isinv 16420 . 2  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F ( X (Sect `  C ) Y ) G  /\  G ( Y (Sect `  C ) X ) F ) ) )
144, 3, 7, 10, 12setcsect 16739 . . . . 5  |-  ( ph  ->  ( F ( X (Sect `  C ) Y ) G  <->  ( F : X --> Y  /\  G : Y --> X  /\  ( G  o.  F )  =  (  _I  |`  X ) ) ) )
15 df-3an 1039 . . . . 5  |-  ( ( F : X --> Y  /\  G : Y --> X  /\  ( G  o.  F
)  =  (  _I  |`  X ) )  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X )
) )
1614, 15syl6bb 276 . . . 4  |-  ( ph  ->  ( F ( X (Sect `  C ) Y ) G  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X )
) ) )
174, 3, 10, 7, 12setcsect 16739 . . . . 5  |-  ( ph  ->  ( G ( Y (Sect `  C ) X ) F  <->  ( G : Y --> X  /\  F : X --> Y  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) ) )
18 3ancoma 1045 . . . . . 6  |-  ( ( G : Y --> X  /\  F : X --> Y  /\  ( F  o.  G
)  =  (  _I  |`  Y ) )  <->  ( F : X --> Y  /\  G : Y --> X  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) )
19 df-3an 1039 . . . . . 6  |-  ( ( F : X --> Y  /\  G : Y --> X  /\  ( F  o.  G
)  =  (  _I  |`  Y ) )  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) )
2018, 19bitri 264 . . . . 5  |-  ( ( G : Y --> X  /\  F : X --> Y  /\  ( F  o.  G
)  =  (  _I  |`  Y ) )  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) )
2117, 20syl6bb 276 . . . 4  |-  ( ph  ->  ( G ( Y (Sect `  C ) X ) F  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) ) )
2216, 21anbi12d 747 . . 3  |-  ( ph  ->  ( ( F ( X (Sect `  C
) Y ) G  /\  G ( Y (Sect `  C ) X ) F )  <-> 
( ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X )
)  /\  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) ) ) )
23 anandi 871 . . 3  |-  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  (
( G  o.  F
)  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) )  <->  ( (
( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X ) )  /\  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) ) )
2422, 23syl6bbr 278 . 2  |-  ( ph  ->  ( ( F ( X (Sect `  C
) Y ) G  /\  G ( Y (Sect `  C ) X ) F )  <-> 
( ( F : X
--> Y  /\  G : Y
--> X )  /\  (
( G  o.  F
)  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) ) ) )
25 fcof1o 6551 . . . . . 6  |-  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  (
( F  o.  G
)  =  (  _I  |`  Y )  /\  ( G  o.  F )  =  (  _I  |`  X ) ) )  ->  ( F : X -1-1-onto-> Y  /\  `' F  =  G ) )
26 eqcom 2629 . . . . . . 7  |-  ( `' F  =  G  <->  G  =  `' F )
2726anbi2i 730 . . . . . 6  |-  ( ( F : X -1-1-onto-> Y  /\  `' F  =  G
)  <->  ( F : X
-1-1-onto-> Y  /\  G  =  `' F ) )
2825, 27sylib 208 . . . . 5  |-  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  (
( F  o.  G
)  =  (  _I  |`  Y )  /\  ( G  o.  F )  =  (  _I  |`  X ) ) )  ->  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )
2928ancom2s 844 . . . 4  |-  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  (
( G  o.  F
)  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) )  ->  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )
3029adantl 482 . . 3  |-  ( (
ph  /\  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( ( G  o.  F )  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) ) )  -> 
( F : X -1-1-onto-> Y  /\  G  =  `' F ) )
31 f1of 6137 . . . . 5  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
3231ad2antrl 764 . . . 4  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  F : X --> Y )
33 f1ocnv 6149 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
3433ad2antrl 764 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  `' F : Y -1-1-onto-> X )
35 f1oeq1 6127 . . . . . . 7  |-  ( G  =  `' F  -> 
( G : Y -1-1-onto-> X  <->  `' F : Y -1-1-onto-> X ) )
3635ad2antll 765 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( G : Y -1-1-onto-> X  <->  `' F : Y -1-1-onto-> X ) )
3734, 36mpbird 247 . . . . 5  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  G : Y -1-1-onto-> X )
38 f1of 6137 . . . . 5  |-  ( G : Y -1-1-onto-> X  ->  G : Y
--> X )
3937, 38syl 17 . . . 4  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  G : Y --> X )
40 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  G  =  `' F
)
4140coeq1d 5283 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( G  o.  F
)  =  ( `' F  o.  F ) )
42 f1ococnv1 6165 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  ( `' F  o.  F )  =  (  _I  |`  X ) )
4342ad2antrl 764 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( `' F  o.  F )  =  (  _I  |`  X )
)
4441, 43eqtrd 2656 . . . . 5  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( G  o.  F
)  =  (  _I  |`  X ) )
4540coeq2d 5284 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( F  o.  G
)  =  ( F  o.  `' F ) )
46 f1ococnv2 6163 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  ( F  o.  `' F )  =  (  _I  |`  Y )
)
4746ad2antrl 764 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( F  o.  `' F )  =  (  _I  |`  Y )
)
4845, 47eqtrd 2656 . . . . 5  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( F  o.  G
)  =  (  _I  |`  Y ) )
4944, 48jca 554 . . . 4  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( ( G  o.  F )  =  (  _I  |`  X )  /\  ( F  o.  G
)  =  (  _I  |`  Y ) ) )
5032, 39, 49jca31 557 . . 3  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( ( F : X
--> Y  /\  G : Y
--> X )  /\  (
( G  o.  F
)  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) ) )
5130, 50impbida 877 . 2  |-  ( ph  ->  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  ( ( G  o.  F )  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) )  <->  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) ) )
5213, 24, 513bitrd 294 1  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F : X -1-1-onto-> Y  /\  G  =  `' F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Catccat 16325  Sectcsect 16404  Invcinv 16405   SetCatcsetc 16725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-setc 16726
This theorem is referenced by:  setciso  16741  yonedainv  16921
  Copyright terms: Public domain W3C validator