MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc Structured version   Visualization version   Unicode version

Theorem itunitc 9243
Description: The union of all union iterates creates the transitive closure; compare trcl 8604. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
Assertion
Ref Expression
itunitc  |-  ( TC
`  A )  = 
U. ran  ( U `  A )
Distinct variable group:    x, A, y
Allowed substitution hints:    U( x, y)

Proof of Theorem itunitc
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( a  =  A  ->  ( TC `  a )  =  ( TC `  A
) )
2 fveq2 6191 . . . . . 6  |-  ( a  =  A  ->  ( U `  a )  =  ( U `  A ) )
32rneqd 5353 . . . . 5  |-  ( a  =  A  ->  ran  ( U `  a )  =  ran  ( U `
 A ) )
43unieqd 4446 . . . 4  |-  ( a  =  A  ->  U. ran  ( U `  a )  =  U. ran  ( U `  A )
)
51, 4eqeq12d 2637 . . 3  |-  ( a  =  A  ->  (
( TC `  a
)  =  U. ran  ( U `  a )  <-> 
( TC `  A
)  =  U. ran  ( U `  A ) ) )
6 vex 3203 . . . . . . 7  |-  a  e. 
_V
7 ituni.u . . . . . . . 8  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
87ituni0 9240 . . . . . . 7  |-  ( a  e.  _V  ->  (
( U `  a
) `  (/) )  =  a )
96, 8ax-mp 5 . . . . . 6  |-  ( ( U `  a ) `
 (/) )  =  a
10 fvssunirn 6217 . . . . . 6  |-  ( ( U `  a ) `
 (/) )  C_  U. ran  ( U `  a )
119, 10eqsstr3i 3636 . . . . 5  |-  a  C_  U.
ran  ( U `  a )
12 dftr3 4756 . . . . . 6  |-  ( Tr 
U. ran  ( U `  a )  <->  A. b  e.  U. ran  ( U `
 a ) b 
C_  U. ran  ( U `
 a ) )
137itunifn 9239 . . . . . . . 8  |-  ( a  e.  _V  ->  ( U `  a )  Fn  om )
14 fnunirn 6511 . . . . . . . 8  |-  ( ( U `  a )  Fn  om  ->  (
b  e.  U. ran  ( U `  a )  <->  E. c  e.  om  b  e.  ( ( U `  a ) `  c ) ) )
156, 13, 14mp2b 10 . . . . . . 7  |-  ( b  e.  U. ran  ( U `  a )  <->  E. c  e.  om  b  e.  ( ( U `  a ) `  c
) )
16 elssuni 4467 . . . . . . . . 9  |-  ( b  e.  ( ( U `
 a ) `  c )  ->  b  C_ 
U. ( ( U `
 a ) `  c ) )
177itunisuc 9241 . . . . . . . . . 10  |-  ( ( U `  a ) `
 suc  c )  =  U. ( ( U `
 a ) `  c )
18 fvssunirn 6217 . . . . . . . . . 10  |-  ( ( U `  a ) `
 suc  c )  C_ 
U. ran  ( U `  a )
1917, 18eqsstr3i 3636 . . . . . . . . 9  |-  U. (
( U `  a
) `  c )  C_ 
U. ran  ( U `  a )
2016, 19syl6ss 3615 . . . . . . . 8  |-  ( b  e.  ( ( U `
 a ) `  c )  ->  b  C_ 
U. ran  ( U `  a ) )
2120rexlimivw 3029 . . . . . . 7  |-  ( E. c  e.  om  b  e.  ( ( U `  a ) `  c
)  ->  b  C_  U.
ran  ( U `  a ) )
2215, 21sylbi 207 . . . . . 6  |-  ( b  e.  U. ran  ( U `  a )  ->  b  C_  U. ran  ( U `  a )
)
2312, 22mprgbir 2927 . . . . 5  |-  Tr  U. ran  ( U `  a
)
24 tcmin 8617 . . . . . 6  |-  ( a  e.  _V  ->  (
( a  C_  U. ran  ( U `  a )  /\  Tr  U. ran  ( U `  a ) )  ->  ( TC `  a )  C_  U. ran  ( U `  a ) ) )
256, 24ax-mp 5 . . . . 5  |-  ( ( a  C_  U. ran  ( U `  a )  /\  Tr  U. ran  ( U `  a )
)  ->  ( TC `  a )  C_  U. ran  ( U `  a ) )
2611, 23, 25mp2an 708 . . . 4  |-  ( TC
`  a )  C_  U.
ran  ( U `  a )
27 unissb 4469 . . . . 5  |-  ( U. ran  ( U `  a
)  C_  ( TC `  a )  <->  A. b  e.  ran  ( U `  a ) b  C_  ( TC `  a ) )
28 fvelrnb 6243 . . . . . . 7  |-  ( ( U `  a )  Fn  om  ->  (
b  e.  ran  ( U `  a )  <->  E. c  e.  om  (
( U `  a
) `  c )  =  b ) )
296, 13, 28mp2b 10 . . . . . 6  |-  ( b  e.  ran  ( U `
 a )  <->  E. c  e.  om  ( ( U `
 a ) `  c )  =  b )
307itunitc1 9242 . . . . . . . . 9  |-  ( ( U `  a ) `
 c )  C_  ( TC `  a )
3130a1i 11 . . . . . . . 8  |-  ( c  e.  om  ->  (
( U `  a
) `  c )  C_  ( TC `  a
) )
32 sseq1 3626 . . . . . . . 8  |-  ( ( ( U `  a
) `  c )  =  b  ->  ( ( ( U `  a
) `  c )  C_  ( TC `  a
)  <->  b  C_  ( TC `  a ) ) )
3331, 32syl5ibcom 235 . . . . . . 7  |-  ( c  e.  om  ->  (
( ( U `  a ) `  c
)  =  b  -> 
b  C_  ( TC `  a ) ) )
3433rexlimiv 3027 . . . . . 6  |-  ( E. c  e.  om  (
( U `  a
) `  c )  =  b  ->  b  C_  ( TC `  a ) )
3529, 34sylbi 207 . . . . 5  |-  ( b  e.  ran  ( U `
 a )  -> 
b  C_  ( TC `  a ) )
3627, 35mprgbir 2927 . . . 4  |-  U. ran  ( U `  a ) 
C_  ( TC `  a )
3726, 36eqssi 3619 . . 3  |-  ( TC
`  a )  = 
U. ran  ( U `  a )
385, 37vtoclg 3266 . 2  |-  ( A  e.  _V  ->  ( TC `  A )  = 
U. ran  ( U `  A ) )
39 rn0 5377 . . . . 5  |-  ran  (/)  =  (/)
4039unieqi 4445 . . . 4  |-  U. ran  (/)  =  U. (/)
41 uni0 4465 . . . 4  |-  U. (/)  =  (/)
4240, 41eqtr2i 2645 . . 3  |-  (/)  =  U. ran  (/)
43 fvprc 6185 . . 3  |-  ( -.  A  e.  _V  ->  ( TC `  A )  =  (/) )
44 fvprc 6185 . . . . 5  |-  ( -.  A  e.  _V  ->  ( U `  A )  =  (/) )
4544rneqd 5353 . . . 4  |-  ( -.  A  e.  _V  ->  ran  ( U `  A
)  =  ran  (/) )
4645unieqd 4446 . . 3  |-  ( -.  A  e.  _V  ->  U.
ran  ( U `  A )  =  U. ran  (/) )
4742, 43, 463eqtr4a 2682 . 2  |-  ( -.  A  e.  _V  ->  ( TC `  A )  =  U. ran  ( U `  A )
)
4838, 47pm2.61i 176 1  |-  ( TC
`  A )  = 
U. ran  ( U `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   U.cuni 4436    |-> cmpt 4729   Tr wtr 4752   ran crn 5115    |` cres 5116   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065   reccrdg 7505   TCctc 8612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-tc 8613
This theorem is referenced by:  hsmexlem5  9252
  Copyright terms: Public domain W3C validator