Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2 Structured version   Visualization version   Unicode version

Theorem kelac2 37635
Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac2.s  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
kelac2.z  |-  ( (
ph  /\  x  e.  I )  ->  S  =/=  (/) )
kelac2.k  |-  ( ph  ->  ( Xt_ `  (
x  e.  I  |->  (
topGen `  { S ,  { ~P U. S } } ) ) )  e.  Comp )
Assertion
Ref Expression
kelac2  |-  ( ph  -> 
X_ x  e.  I  S  =/=  (/) )
Distinct variable groups:    ph, x    x, I
Allowed substitution hints:    S( x)    V( x)

Proof of Theorem kelac2
StepHypRef Expression
1 kelac2.z . 2  |-  ( (
ph  /\  x  e.  I )  ->  S  =/=  (/) )
2 kelac2.s . . 3  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
3 kelac2lem 37634 . . 3  |-  ( S  e.  V  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Comp )
4 cmptop 21198 . . 3  |-  ( (
topGen `  { S ,  { ~P U. S } } )  e.  Comp  -> 
( topGen `  { S ,  { ~P U. S } } )  e.  Top )
52, 3, 43syl 18 . 2  |-  ( (
ph  /\  x  e.  I )  ->  ( topGen `
 { S ,  { ~P U. S } } )  e.  Top )
6 uncom 3757 . . . . . . 7  |-  ( S  u.  { ~P U. S } )  =  ( { ~P U. S }  u.  S )
76difeq1i 3724 . . . . . 6  |-  ( ( S  u.  { ~P U. S } )  \  S )  =  ( ( { ~P U. S }  u.  S
)  \  S )
8 difun2 4048 . . . . . 6  |-  ( ( { ~P U. S }  u.  S )  \  S )  =  ( { ~P U. S }  \  S )
97, 8eqtri 2644 . . . . 5  |-  ( ( S  u.  { ~P U. S } )  \  S )  =  ( { ~P U. S }  \  S )
10 snex 4908 . . . . . . 7  |-  { ~P U. S }  e.  _V
11 uniprg 4450 . . . . . . 7  |-  ( ( S  e.  V  /\  { ~P U. S }  e.  _V )  ->  U. { S ,  { ~P U. S } }  =  ( S  u.  { ~P U. S } ) )
122, 10, 11sylancl 694 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  U. { S ,  { ~P U. S } }  =  ( S  u.  { ~P U. S } ) )
1312difeq1d 3727 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( U. { S ,  { ~P U. S } }  \  S )  =  ( ( S  u.  { ~P U. S } ) 
\  S ) )
14 incom 3805 . . . . . . 7  |-  ( { ~P U. S }  i^i  S )  =  ( S  i^i  { ~P U. S } )
15 pwuninel 7401 . . . . . . . . 9  |-  -.  ~P U. S  e.  S
1615a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  -.  ~P U. S  e.  S
)
17 disjsn 4246 . . . . . . . 8  |-  ( ( S  i^i  { ~P U. S } )  =  (/) 
<->  -.  ~P U. S  e.  S )
1816, 17sylibr 224 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( S  i^i  { ~P U. S } )  =  (/) )
1914, 18syl5eq 2668 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( { ~P U. S }  i^i  S )  =  (/) )
20 disj3 4021 . . . . . 6  |-  ( ( { ~P U. S }  i^i  S )  =  (/) 
<->  { ~P U. S }  =  ( { ~P U. S }  \  S ) )
2119, 20sylib 208 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  =  ( { ~P U. S }  \  S ) )
229, 13, 213eqtr4a 2682 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( U. { S ,  { ~P U. S } }  \  S )  =  { ~P U. S } )
23 prex 4909 . . . . . 6  |-  { S ,  { ~P U. S } }  e.  _V
24 bastg 20770 . . . . . 6  |-  ( { S ,  { ~P U. S } }  e.  _V  ->  { S ,  { ~P U. S } }  C_  ( topGen `  { S ,  { ~P U. S } } ) )
2523, 24mp1i 13 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  { S ,  { ~P U. S } }  C_  ( topGen `  { S ,  { ~P U. S } }
) )
2610prid2 4298 . . . . . 6  |-  { ~P U. S }  e.  { S ,  { ~P U. S } }
2726a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  e.  { S ,  { ~P U. S } } )
2825, 27sseldd 3604 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  e.  (
topGen `  { S ,  { ~P U. S } } ) )
2922, 28eqeltrd 2701 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( U. { S ,  { ~P U. S } }  \  S )  e.  (
topGen `  { S ,  { ~P U. S } } ) )
30 prid1g 4295 . . . . 5  |-  ( S  e.  V  ->  S  e.  { S ,  { ~P U. S } }
)
31 elssuni 4467 . . . . 5  |-  ( S  e.  { S ,  { ~P U. S } }  ->  S  C_  U. { S ,  { ~P U. S } } )
322, 30, 313syl 18 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  S  C_ 
U. { S ,  { ~P U. S } } )
33 unitg 20771 . . . . . . 7  |-  ( { S ,  { ~P U. S } }  e.  _V  ->  U. ( topGen `  { S ,  { ~P U. S } } )  =  U. { S ,  { ~P U. S } } )
3423, 33ax-mp 5 . . . . . 6  |-  U. ( topGen `
 { S ,  { ~P U. S } } )  =  U. { S ,  { ~P U. S } }
3534eqcomi 2631 . . . . 5  |-  U. { S ,  { ~P U. S } }  =  U. ( topGen `  { S ,  { ~P U. S } } )
3635iscld2 20832 . . . 4  |-  ( ( ( topGen `  { S ,  { ~P U. S } } )  e.  Top  /\  S  C_  U. { S ,  { ~P U. S } } )  ->  ( S  e.  ( Clsd `  ( topGen `  { S ,  { ~P U. S } } ) )  <->  ( U. { S ,  { ~P U. S } }  \  S )  e.  (
topGen `  { S ,  { ~P U. S } } ) ) )
375, 32, 36syl2anc 693 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( S  e.  ( Clsd `  ( topGen `  { S ,  { ~P U. S } } ) )  <->  ( U. { S ,  { ~P U. S } }  \  S )  e.  (
topGen `  { S ,  { ~P U. S } } ) ) )
3829, 37mpbird 247 . 2  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  ( Clsd `  ( topGen `
 { S ,  { ~P U. S } } ) ) )
39 f1oi 6174 . . 3  |-  (  _I  |`  S ) : S -1-1-onto-> S
4039a1i 11 . 2  |-  ( (
ph  /\  x  e.  I )  ->  (  _I  |`  S ) : S -1-1-onto-> S )
41 elssuni 4467 . . . . 5  |-  ( { ~P U. S }  e.  { S ,  { ~P U. S } }  ->  { ~P U. S }  C_  U. { S ,  { ~P U. S } } )
4226, 41mp1i 13 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  { ~P U. S }  C_  U. { S ,  { ~P U. S } } )
43 uniexg 6955 . . . . 5  |-  ( S  e.  V  ->  U. S  e.  _V )
44 pwexg 4850 . . . . 5  |-  ( U. S  e.  _V  ->  ~P
U. S  e.  _V )
45 snidg 4206 . . . . 5  |-  ( ~P
U. S  e.  _V  ->  ~P U. S  e. 
{ ~P U. S } )
462, 43, 44, 454syl 19 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  { ~P U. S } )
4742, 46sseldd 3604 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  U. { S ,  { ~P U. S } } )
4847, 34syl6eleqr 2712 . 2  |-  ( (
ph  /\  x  e.  I )  ->  ~P U. S  e.  U. ( topGen `
 { S ,  { ~P U. S } } ) )
49 kelac2.k . 2  |-  ( ph  ->  ( Xt_ `  (
x  e.  I  |->  (
topGen `  { S ,  { ~P U. S } } ) ) )  e.  Comp )
501, 5, 38, 40, 48, 49kelac1 37633 1  |-  ( ph  -> 
X_ x  e.  I  S  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   U.cuni 4436    |-> cmpt 4729    _I cid 5023    |` cres 5116   -1-1-onto->wf1o 5887   ` cfv 5888   X_cixp 7908   topGenctg 16098   Xt_cpt 16099   Topctop 20698   Clsdccld 20820   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-topgen 16104  df-pt 16105  df-top 20699  df-bases 20750  df-cld 20823  df-cmp 21190
This theorem is referenced by:  dfac21  37636
  Copyright terms: Public domain W3C validator