Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsdi1 Structured version   Visualization version   Unicode version

Theorem ldualvsdi1 34430
Description: Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvsdi1.f  |-  F  =  (LFnl `  W )
ldualvsdi1.r  |-  R  =  (Scalar `  W )
ldualvsdi1.k  |-  K  =  ( Base `  R
)
ldualvsdi1.d  |-  D  =  (LDual `  W )
ldualvsdi1.p  |-  .+  =  ( +g  `  D )
ldualvsdi1.s  |-  .x.  =  ( .s `  D )
ldualvsdi1.w  |-  ( ph  ->  W  e.  LMod )
ldualvsdi1.x  |-  ( ph  ->  X  e.  K )
ldualvsdi1.g  |-  ( ph  ->  G  e.  F )
ldualvsdi1.h  |-  ( ph  ->  H  e.  F )
Assertion
Ref Expression
ldualvsdi1  |-  ( ph  ->  ( X  .x.  ( G  .+  H ) )  =  ( ( X 
.x.  G )  .+  ( X  .x.  H ) ) )

Proof of Theorem ldualvsdi1
StepHypRef Expression
1 ldualvsdi1.f . . . 4  |-  F  =  (LFnl `  W )
2 eqid 2622 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
3 ldualvsdi1.r . . . 4  |-  R  =  (Scalar `  W )
4 ldualvsdi1.k . . . 4  |-  K  =  ( Base `  R
)
5 eqid 2622 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
6 ldualvsdi1.d . . . 4  |-  D  =  (LDual `  W )
7 ldualvsdi1.s . . . 4  |-  .x.  =  ( .s `  D )
8 ldualvsdi1.w . . . 4  |-  ( ph  ->  W  e.  LMod )
9 ldualvsdi1.x . . . 4  |-  ( ph  ->  X  e.  K )
10 ldualvsdi1.g . . . 4  |-  ( ph  ->  G  e.  F )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ldualvs 34424 . . 3  |-  ( ph  ->  ( X  .x.  G
)  =  ( G  oF ( .r
`  R ) ( ( Base `  W
)  X.  { X } ) ) )
12 ldualvsdi1.h . . . 4  |-  ( ph  ->  H  e.  F )
131, 2, 3, 4, 5, 6, 7, 8, 9, 12ldualvs 34424 . . 3  |-  ( ph  ->  ( X  .x.  H
)  =  ( H  oF ( .r
`  R ) ( ( Base `  W
)  X.  { X } ) ) )
1411, 13oveq12d 6668 . 2  |-  ( ph  ->  ( ( X  .x.  G )  oF ( +g  `  R
) ( X  .x.  H ) )  =  ( ( G  oF ( .r `  R ) ( (
Base `  W )  X.  { X } ) )  oF ( +g  `  R ) ( H  oF ( .r `  R
) ( ( Base `  W )  X.  { X } ) ) ) )
15 eqid 2622 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
16 ldualvsdi1.p . . 3  |-  .+  =  ( +g  `  D )
171, 3, 4, 6, 7, 8, 9, 10ldualvscl 34426 . . 3  |-  ( ph  ->  ( X  .x.  G
)  e.  F )
181, 3, 4, 6, 7, 8, 9, 12ldualvscl 34426 . . 3  |-  ( ph  ->  ( X  .x.  H
)  e.  F )
191, 3, 15, 6, 16, 8, 17, 18ldualvadd 34416 . 2  |-  ( ph  ->  ( ( X  .x.  G )  .+  ( X  .x.  H ) )  =  ( ( X 
.x.  G )  oF ( +g  `  R
) ( X  .x.  H ) ) )
201, 6, 16, 8, 10, 12ldualvaddcl 34417 . . . 4  |-  ( ph  ->  ( G  .+  H
)  e.  F )
211, 2, 3, 4, 5, 6, 7, 8, 9, 20ldualvs 34424 . . 3  |-  ( ph  ->  ( X  .x.  ( G  .+  H ) )  =  ( ( G 
.+  H )  oF ( .r `  R ) ( (
Base `  W )  X.  { X } ) ) )
221, 3, 15, 6, 16, 8, 10, 12ldualvadd 34416 . . . 4  |-  ( ph  ->  ( G  .+  H
)  =  ( G  oF ( +g  `  R ) H ) )
2322oveq1d 6665 . . 3  |-  ( ph  ->  ( ( G  .+  H )  oF ( .r `  R
) ( ( Base `  W )  X.  { X } ) )  =  ( ( G  oF ( +g  `  R
) H )  oF ( .r `  R ) ( (
Base `  W )  X.  { X } ) ) )
242, 3, 4, 15, 5, 1, 8, 9, 10, 12lflvsdi1 34365 . . 3  |-  ( ph  ->  ( ( G  oF ( +g  `  R
) H )  oF ( .r `  R ) ( (
Base `  W )  X.  { X } ) )  =  ( ( G  oF ( .r `  R ) ( ( Base `  W
)  X.  { X } ) )  oF ( +g  `  R
) ( H  oF ( .r `  R ) ( (
Base `  W )  X.  { X } ) ) ) )
2521, 23, 243eqtrd 2660 . 2  |-  ( ph  ->  ( X  .x.  ( G  .+  H ) )  =  ( ( G  oF ( .r
`  R ) ( ( Base `  W
)  X.  { X } ) )  oF ( +g  `  R
) ( H  oF ( .r `  R ) ( (
Base `  W )  X.  { X } ) ) ) )
2614, 19, 253eqtr4rd 2667 1  |-  ( ph  ->  ( X  .x.  ( G  .+  H ) )  =  ( ( X 
.x.  G )  .+  ( X  .x.  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {csn 4177    X. cxp 5112   ` cfv 5888  (class class class)co 6650    oFcof 6895   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   LModclmod 18863  LFnlclfn 34344  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lfl 34345  df-ldual 34411
This theorem is referenced by:  lduallmodlem  34439
  Copyright terms: Public domain W3C validator