Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lduallmodlem Structured version   Visualization version   Unicode version

Theorem lduallmodlem 34439
Description: Lemma for lduallmod 34440. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lduallmod.d  |-  D  =  (LDual `  W )
lduallmod.w  |-  ( ph  ->  W  e.  LMod )
lduallmod.v  |-  V  =  ( Base `  W
)
lduallmod.p  |-  .+  =  oF ( +g  `  W )
lduallmod.f  |-  F  =  (LFnl `  W )
lduallmod.r  |-  R  =  (Scalar `  W )
lduallmod.k  |-  K  =  ( Base `  R
)
lduallmod.t  |-  .X.  =  ( .r `  R )
lduallmod.o  |-  O  =  (oppr
`  R )
lduallmod.s  |-  .x.  =  ( .s `  D )
Assertion
Ref Expression
lduallmodlem  |-  ( ph  ->  D  e.  LMod )

Proof of Theorem lduallmodlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lduallmod.f . . . 4  |-  F  =  (LFnl `  W )
2 lduallmod.d . . . 4  |-  D  =  (LDual `  W )
3 eqid 2622 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
4 lduallmod.w . . . 4  |-  ( ph  ->  W  e.  LMod )
51, 2, 3, 4ldualvbase 34413 . . 3  |-  ( ph  ->  ( Base `  D
)  =  F )
65eqcomd 2628 . 2  |-  ( ph  ->  F  =  ( Base `  D ) )
7 eqidd 2623 . 2  |-  ( ph  ->  ( +g  `  D
)  =  ( +g  `  D ) )
8 lduallmod.r . . . 4  |-  R  =  (Scalar `  W )
9 lduallmod.o . . . 4  |-  O  =  (oppr
`  R )
10 eqid 2622 . . . 4  |-  (Scalar `  D )  =  (Scalar `  D )
118, 9, 2, 10, 4ldualsca 34419 . . 3  |-  ( ph  ->  (Scalar `  D )  =  O )
1211eqcomd 2628 . 2  |-  ( ph  ->  O  =  (Scalar `  D ) )
13 lduallmod.s . . 3  |-  .x.  =  ( .s `  D )
1413a1i 11 . 2  |-  ( ph  ->  .x.  =  ( .s
`  D ) )
15 lduallmod.k . . . 4  |-  K  =  ( Base `  R
)
169, 15opprbas 18629 . . 3  |-  K  =  ( Base `  O
)
1716a1i 11 . 2  |-  ( ph  ->  K  =  ( Base `  O ) )
18 eqid 2622 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
199, 18oppradd 18630 . . 3  |-  ( +g  `  R )  =  ( +g  `  O )
2019a1i 11 . 2  |-  ( ph  ->  ( +g  `  R
)  =  ( +g  `  O ) )
2111fveq2d 6195 . 2  |-  ( ph  ->  ( .r `  (Scalar `  D ) )  =  ( .r `  O
) )
22 eqid 2622 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
239, 22oppr1 18634 . . 3  |-  ( 1r
`  R )  =  ( 1r `  O
)
2423a1i 11 . 2  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  O ) )
258lmodring 18871 . . 3  |-  ( W  e.  LMod  ->  R  e. 
Ring )
269opprring 18631 . . 3  |-  ( R  e.  Ring  ->  O  e. 
Ring )
274, 25, 263syl 18 . 2  |-  ( ph  ->  O  e.  Ring )
282, 4ldualgrp 34433 . 2  |-  ( ph  ->  D  e.  Grp )
2943ad2ant1 1082 . . 3  |-  ( (
ph  /\  x  e.  K  /\  y  e.  F
)  ->  W  e.  LMod )
30 simp2 1062 . . 3  |-  ( (
ph  /\  x  e.  K  /\  y  e.  F
)  ->  x  e.  K )
31 simp3 1063 . . 3  |-  ( (
ph  /\  x  e.  K  /\  y  e.  F
)  ->  y  e.  F )
321, 8, 15, 2, 13, 29, 30, 31ldualvscl 34426 . 2  |-  ( (
ph  /\  x  e.  K  /\  y  e.  F
)  ->  ( x  .x.  y )  e.  F
)
33 eqid 2622 . . 3  |-  ( +g  `  D )  =  ( +g  `  D )
344adantr 481 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  ->  W  e.  LMod )
35 simpr1 1067 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  ->  x  e.  K )
36 simpr2 1068 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  -> 
y  e.  F )
37 simpr3 1069 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  -> 
z  e.  F )
381, 8, 15, 2, 33, 13, 34, 35, 36, 37ldualvsdi1 34430 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  -> 
( x  .x.  (
y ( +g  `  D
) z ) )  =  ( ( x 
.x.  y ) ( +g  `  D ) ( x  .x.  z
) ) )
394adantr 481 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  ->  W  e.  LMod )
40 simpr1 1067 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  ->  x  e.  K )
41 simpr2 1068 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  -> 
y  e.  K )
42 simpr3 1069 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  -> 
z  e.  F )
431, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42ldualvsdi2 34431 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  -> 
( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  D
) ( y  .x.  z ) ) )
44 eqid 2622 . . 3  |-  ( .r
`  (Scalar `  D )
)  =  ( .r
`  (Scalar `  D )
)
451, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42ldualvsass2 34429 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  -> 
( ( x ( .r `  (Scalar `  D ) ) y )  .x.  z )  =  ( x  .x.  ( y  .x.  z
) ) )
46 lduallmod.v . . . 4  |-  V  =  ( Base `  W
)
47 lduallmod.t . . . 4  |-  .X.  =  ( .r `  R )
484adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  F )  ->  W  e.  LMod )
4915, 22ringidcl 18568 . . . . . 6  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  K )
504, 25, 493syl 18 . . . . 5  |-  ( ph  ->  ( 1r `  R
)  e.  K )
5150adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  F )  ->  ( 1r `  R )  e.  K )
52 simpr 477 . . . 4  |-  ( (
ph  /\  x  e.  F )  ->  x  e.  F )
531, 46, 8, 15, 47, 2, 13, 48, 51, 52ldualvs 34424 . . 3  |-  ( (
ph  /\  x  e.  F )  ->  (
( 1r `  R
)  .x.  x )  =  ( x  oF  .X.  ( V  X.  { ( 1r `  R ) } ) ) )
5446, 8, 1, 15, 47, 22, 48, 52lfl1sc 34371 . . 3  |-  ( (
ph  /\  x  e.  F )  ->  (
x  oF  .X.  ( V  X.  { ( 1r `  R ) } ) )  =  x )
5553, 54eqtrd 2656 . 2  |-  ( (
ph  /\  x  e.  F )  ->  (
( 1r `  R
)  .x.  x )  =  x )
566, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55islmodd 18869 1  |-  ( ph  ->  D  e.  LMod )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {csn 4177    X. cxp 5112   ` cfv 5888  (class class class)co 6650    oFcof 6895   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   1rcur 18501   Ringcrg 18547  opprcoppr 18622   LModclmod 18863  LFnlclfn 34344  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-lmod 18865  df-lfl 34345  df-ldual 34411
This theorem is referenced by:  lduallmod  34440
  Copyright terms: Public domain W3C validator