Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsuplem Structured version   Visualization version   Unicode version

Theorem liminflelimsuplem 40007
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsuplem.1  |-  ( ph  ->  F  e.  V )
liminflelimsuplem.2  |-  ( ph  ->  A. k  e.  RR  E. j  e.  ( k [,) +oo ) ( ( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )
Assertion
Ref Expression
liminflelimsuplem  |-  ( ph  ->  (liminf `  F )  <_  ( limsup `  F )
)
Distinct variable groups:    j, F, k    ph, j
Allowed substitution hints:    ph( k)    V( j, k)

Proof of Theorem liminflelimsuplem
Dummy variables  i 
l  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . . . . . 12  |-  ( ( i  e.  RR  /\  l  e.  RR )  ->  l  e.  RR )
2 simpl 473 . . . . . . . . . . . 12  |-  ( ( i  e.  RR  /\  l  e.  RR )  ->  i  e.  RR )
31, 2ifcld 4131 . . . . . . . . . . 11  |-  ( ( i  e.  RR  /\  l  e.  RR )  ->  if ( i  <_ 
l ,  l ,  i )  e.  RR )
43adantll 750 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  RR )  /\  l  e.  RR )  ->  if ( i  <_  l ,  l ,  i )  e.  RR )
5 liminflelimsuplem.2 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  RR  E. j  e.  ( k [,) +oo ) ( ( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )
65ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  RR )  /\  l  e.  RR )  ->  A. k  e.  RR  E. j  e.  ( k [,) +oo ) ( ( F
" ( j [,) +oo ) )  i^i  RR* )  =/=  (/) )
7 oveq1 6657 . . . . . . . . . . . 12  |-  ( k  =  if ( i  <_  l ,  l ,  i )  -> 
( k [,) +oo )  =  ( if ( i  <_  l ,  l ,  i ) [,) +oo )
)
87rexeqdv 3145 . . . . . . . . . . 11  |-  ( k  =  if ( i  <_  l ,  l ,  i )  -> 
( E. j  e.  ( k [,) +oo ) ( ( F
" ( j [,) +oo ) )  i^i  RR* )  =/=  (/)  <->  E. j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) ( ( F
" ( j [,) +oo ) )  i^i  RR* )  =/=  (/) ) )
98rspcva 3307 . . . . . . . . . 10  |-  ( ( if ( i  <_ 
l ,  l ,  i )  e.  RR  /\ 
A. k  e.  RR  E. j  e.  ( k [,) +oo ) ( ( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  E. j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) ( ( F
" ( j [,) +oo ) )  i^i  RR* )  =/=  (/) )
104, 6, 9syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  RR )  /\  l  e.  RR )  ->  E. j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) ( ( F
" ( j [,) +oo ) )  i^i  RR* )  =/=  (/) )
11 inss2 3834 . . . . . . . . . . . . . 14  |-  ( ( F " ( i [,) +oo ) )  i^i  RR* )  C_  RR*
12 infxrcl 12163 . . . . . . . . . . . . . 14  |-  ( ( ( F " (
i [,) +oo )
)  i^i  RR* )  C_  RR* 
-> inf ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR* )
1311, 12ax-mp 5 . . . . . . . . . . . . 13  |- inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
RR*
1413a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  -> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
RR* )
15 inss2 3834 . . . . . . . . . . . . . 14  |-  ( ( F " ( j [,) +oo ) )  i^i  RR* )  C_  RR*
16 infxrcl 12163 . . . . . . . . . . . . . 14  |-  ( ( ( F " (
j [,) +oo )
)  i^i  RR* )  C_  RR* 
-> inf ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR* )
1715, 16ax-mp 5 . . . . . . . . . . . . 13  |- inf ( ( ( F " (
j [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
RR*
1817a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  -> inf ( ( ( F " (
j [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
RR* )
19 inss2 3834 . . . . . . . . . . . . . 14  |-  ( ( F " ( l [,) +oo ) )  i^i  RR* )  C_  RR*
20 supxrcl 12145 . . . . . . . . . . . . . 14  |-  ( ( ( F " (
l [,) +oo )
)  i^i  RR* )  C_  RR* 
->  sup ( ( ( F " ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR* )
2119, 20ax-mp 5 . . . . . . . . . . . . 13  |-  sup (
( ( F "
( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR*
2221a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  sup (
( ( F "
( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR* )
23 rexr 10085 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  RR  ->  i  e.  RR* )
2423ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  i  e.  RR* )
25 pnfxr 10092 . . . . . . . . . . . . . . . . . 18  |- +oo  e.  RR*
2625a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  -> +oo  e.  RR* )
273rexrd 10089 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  RR  /\  l  e.  RR )  ->  if ( i  <_ 
l ,  l ,  i )  e.  RR* )
2827adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  if ( i  <_  l ,  l ,  i )  e.  RR* )
29 icossxr 12258 . . . . . . . . . . . . . . . . . . . 20  |-  ( if ( i  <_  l ,  l ,  i ) [,) +oo )  C_ 
RR*
30 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  ( if ( i  <_  l , 
l ,  i ) [,) +oo )  -> 
j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo )
)
3129, 30sseldi 3601 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( if ( i  <_  l , 
l ,  i ) [,) +oo )  -> 
j  e.  RR* )
3231adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  j  e.  RR* )
33 max1 12016 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  RR  /\  l  e.  RR )  ->  i  <_  if (
i  <_  l , 
l ,  i ) )
3433adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  i  <_  if ( i  <_ 
l ,  l ,  i ) )
35 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )
3628, 26, 35icogelbd 39785 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  if ( i  <_  l ,  l ,  i )  <_  j )
3724, 28, 32, 34, 36xrletrd 11993 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  i  <_  j )
3824, 26, 37icossico2 39791 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  (
j [,) +oo )  C_  ( i [,) +oo ) )
3938imass2d 39480 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  ( F " ( j [,) +oo ) )  C_  ( F " ( i [,) +oo ) ) )
4039ssrind 39333 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  (
( F " (
j [,) +oo )
)  i^i  RR* )  C_  ( ( F "
( i [,) +oo ) )  i^i  RR* ) )
4111a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  (
( F " (
i [,) +oo )
)  i^i  RR* )  C_  RR* )
42 infxrss 12169 . . . . . . . . . . . . . 14  |-  ( ( ( ( F "
( j [,) +oo ) )  i^i  RR* )  C_  ( ( F
" ( i [,) +oo ) )  i^i  RR* )  /\  ( ( F
" ( i [,) +oo ) )  i^i  RR* )  C_  RR* )  -> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_ inf ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
4340, 41, 42syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  -> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_ inf ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
4443adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  -> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_ inf ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
45 supxrcl 12145 . . . . . . . . . . . . . . 15  |-  ( ( ( F " (
j [,) +oo )
)  i^i  RR* )  C_  RR* 
->  sup ( ( ( F " ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR* )
4615, 45ax-mp 5 . . . . . . . . . . . . . 14  |-  sup (
( ( F "
( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR*
4746a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  sup (
( ( F "
( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR* )
4815a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  ( ( F " ( j [,) +oo ) )  i^i  RR* )  C_  RR* )
49 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  ( ( F " ( j [,) +oo ) )  i^i  RR* )  =/=  (/) )
5048, 49infxrlesupxr 39663 . . . . . . . . . . . . 13  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  -> inf ( ( ( F " (
j [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_  sup ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
51 rexr 10085 . . . . . . . . . . . . . . . . . . 19  |-  ( l  e.  RR  ->  l  e.  RR* )
5251ad2antlr 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  l  e.  RR* )
53 max2 12018 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  RR  /\  l  e.  RR )  ->  l  <_  if (
i  <_  l , 
l ,  i ) )
5453adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  l  <_  if ( i  <_ 
l ,  l ,  i ) )
5552, 28, 32, 54, 36xrletrd 11993 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  l  <_  j )
5652, 26, 55icossico2 39791 . . . . . . . . . . . . . . . . 17  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  (
j [,) +oo )  C_  ( l [,) +oo ) )
5756imass2d 39480 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  ( F " ( j [,) +oo ) )  C_  ( F " ( l [,) +oo ) ) )
5857ssrind 39333 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  (
( F " (
j [,) +oo )
)  i^i  RR* )  C_  ( ( F "
( l [,) +oo ) )  i^i  RR* ) )
5919a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  (
( F " (
l [,) +oo )
)  i^i  RR* )  C_  RR* )
60 supxrss 12162 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F "
( j [,) +oo ) )  i^i  RR* )  C_  ( ( F
" ( l [,) +oo ) )  i^i  RR* )  /\  ( ( F
" ( l [,) +oo ) )  i^i  RR* )  C_  RR* )  ->  sup ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F " ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
6158, 59, 60syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  ->  sup ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F " ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
6261adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  sup (
( ( F "
( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F " ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
6318, 47, 22, 50, 62xrletrd 11993 . . . . . . . . . . . 12  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  -> inf ( ( ( F " (
j [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_  sup ( ( ( F
" ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
6414, 18, 22, 44, 63xrletrd 11993 . . . . . . . . . . 11  |-  ( ( ( ( i  e.  RR  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  -> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_  sup ( ( ( F
" ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
6564ad5ant2345 1317 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  i  e.  RR )  /\  l  e.  RR )  /\  j  e.  ( if ( i  <_ 
l ,  l ,  i ) [,) +oo ) )  /\  (
( F " (
j [,) +oo )
)  i^i  RR* )  =/=  (/) )  -> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_  sup ( ( ( F
" ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
6665rexlimdva2 39339 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  RR )  /\  l  e.  RR )  ->  ( E. j  e.  ( if ( i  <_  l ,  l ,  i ) [,) +oo )
( ( F "
( j [,) +oo ) )  i^i  RR* )  =/=  (/)  -> inf ( (
( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_  sup ( ( ( F
" ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
6710, 66mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  RR )  /\  l  e.  RR )  -> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_  sup ( ( ( F
" ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
6867ralrimiva 2966 . . . . . . 7  |-  ( (
ph  /\  i  e.  RR )  ->  A. l  e.  RR inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F
" ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
69 nfv 1843 . . . . . . . . 9  |-  F/ l
ph
70 xrltso 11974 . . . . . . . . . . 11  |-  <  Or  RR*
7170supex 8369 . . . . . . . . . 10  |-  sup (
( ( F "
( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V
7271a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  l  e.  RR )  ->  sup (
( ( F "
( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V )
73 breq2 4657 . . . . . . . . 9  |-  ( y  =  sup ( ( ( F " (
l [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  -> 
(inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y  <-> inf ( ( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F " ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
7469, 72, 73ralrnmpt3 39474 . . . . . . . 8  |-  ( ph  ->  ( A. y  e. 
ran  ( l  e.  RR  |->  sup ( ( ( F " ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y  <->  A. l  e.  RR inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F
" ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
7574adantr 481 . . . . . . 7  |-  ( (
ph  /\  i  e.  RR )  ->  ( A. y  e.  ran  ( l  e.  RR  |->  sup (
( ( F "
( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y  <->  A. l  e.  RR inf (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F " ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
7668, 75mpbird 247 . . . . . 6  |-  ( (
ph  /\  i  e.  RR )  ->  A. y  e.  ran  ( l  e.  RR  |->  sup ( ( ( F " ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y )
77 oveq1 6657 . . . . . . . . . . . . 13  |-  ( l  =  i  ->  (
l [,) +oo )  =  ( i [,) +oo ) )
7877imaeq2d 5466 . . . . . . . . . . . 12  |-  ( l  =  i  ->  ( F " ( l [,) +oo ) )  =  ( F " ( i [,) +oo ) ) )
7978ineq1d 3813 . . . . . . . . . . 11  |-  ( l  =  i  ->  (
( F " (
l [,) +oo )
)  i^i  RR* )  =  ( ( F "
( i [,) +oo ) )  i^i  RR* ) )
8079supeq1d 8352 . . . . . . . . . 10  |-  ( l  =  i  ->  sup ( ( ( F
" ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )
8180cbvmptv 4750 . . . . . . . . 9  |-  ( l  e.  RR  |->  sup (
( ( F "
( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( i  e.  RR  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
8281rneqi 5352 . . . . . . . 8  |-  ran  (
l  e.  RR  |->  sup ( ( ( F
" ( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
8382raleqi 3142 . . . . . . 7  |-  ( A. y  e.  ran  ( l  e.  RR  |->  sup (
( ( F "
( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y  <->  A. y  e.  ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y
)
8483a1i 11 . . . . . 6  |-  ( (
ph  /\  i  e.  RR )  ->  ( A. y  e.  ran  ( l  e.  RR  |->  sup (
( ( F "
( l [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y  <->  A. y  e.  ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y
) )
8576, 84mpbid 222 . . . . 5  |-  ( (
ph  /\  i  e.  RR )  ->  A. y  e.  ran  ( i  e.  RR  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y )
86 supxrcl 12145 . . . . . . . . . 10  |-  ( ( ( F " (
i [,) +oo )
)  i^i  RR* )  C_  RR* 
->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR* )
8711, 86ax-mp 5 . . . . . . . . 9  |-  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR*
8887rgenw 2924 . . . . . . . 8  |-  A. i  e.  RR  sup ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
RR*
89 eqid 2622 . . . . . . . . 9  |-  ( i  e.  RR  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( i  e.  RR  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
9089rnmptss 6392 . . . . . . . 8  |-  ( A. i  e.  RR  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR*  ->  ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  C_  RR* )
9188, 90ax-mp 5 . . . . . . 7  |-  ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  C_  RR*
9291a1i 11 . . . . . 6  |-  ( (
ph  /\  i  e.  RR )  ->  ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  C_  RR* )
9313a1i 11 . . . . . 6  |-  ( (
ph  /\  i  e.  RR )  -> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  e. 
RR* )
94 infxrgelb 12165 . . . . . 6  |-  ( ( ran  ( i  e.  RR  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  C_  RR* 
/\ inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR* )  ->  (inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_ inf ( ran  ( i  e.  RR  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) , 
RR* ,  <  )  <->  A. y  e.  ran  ( i  e.  RR  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y ) )
9592, 93, 94syl2anc 693 . . . . 5  |-  ( (
ph  /\  i  e.  RR )  ->  (inf ( ( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_ inf ( ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  <->  A. y  e.  ran  ( i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  y
) )
9685, 95mpbird 247 . . . 4  |-  ( (
ph  /\  i  e.  RR )  -> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  <_ inf ( ran  ( i  e.  RR  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) , 
RR* ,  <  ) )
9796ralrimiva 2966 . . 3  |-  ( ph  ->  A. i  e.  RR inf ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_ inf ( ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
98 nfv 1843 . . . 4  |-  F/ i
ph
99 nfcv 2764 . . . 4  |-  F/_ i RR
100 nfmpt1 4747 . . . . . 6  |-  F/_ i
( i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
101100nfrn 5368 . . . . 5  |-  F/_ i ran  ( i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
102 nfcv 2764 . . . . 5  |-  F/_ i RR*
103 nfcv 2764 . . . . 5  |-  F/_ i  <
104101, 102, 103nfinf 8388 . . . 4  |-  F/_ iinf ( ran  ( i  e.  RR  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) , 
RR* ,  <  )
105 infxrcl 12163 . . . . . 6  |-  ( ran  ( i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  C_  RR*  -> inf ( ran  ( i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  e.  RR* )
10691, 105ax-mp 5 . . . . 5  |- inf ( ran  ( i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  e.  RR*
107106a1i 11 . . . 4  |-  ( ph  -> inf ( ran  ( i  e.  RR  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  e.  RR* )
10898, 99, 104, 93, 107supxrleubrnmptf 39680 . . 3  |-  ( ph  ->  ( sup ( ran  ( i  e.  RR  |-> inf ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  <_ inf ( ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  <->  A. i  e.  RR inf ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_ inf ( ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) ) )
10997, 108mpbird 247 . 2  |-  ( ph  ->  sup ( ran  (
i  e.  RR  |-> inf ( ( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  <_ inf ( ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
110 liminflelimsuplem.1 . . . 4  |-  ( ph  ->  F  e.  V )
111 eqid 2622 . . . 4  |-  ( i  e.  RR  |-> inf ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )  =  ( i  e.  RR  |-> inf ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
112110, 111liminfvald 39996 . . 3  |-  ( ph  ->  (liminf `  F )  =  sup ( ran  (
i  e.  RR  |-> inf ( ( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
113110, 89limsupvald 39987 . . 3  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( i  e.  RR  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
114112, 113breq12d 4666 . 2  |-  ( ph  ->  ( (liminf `  F
)  <_  ( limsup `  F )  <->  sup ( ran  ( i  e.  RR  |-> inf ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  <_ inf ( ran  (
i  e.  RR  |->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) ) )
115109, 114mpbird 247 1  |-  ( ph  ->  (liminf `  F )  <_  ( limsup `  F )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177   limsupclsp 14201  liminfclsi 39983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181  df-limsup 14202  df-liminf 39984
This theorem is referenced by:  liminflelimsup  40008
  Copyright terms: Public domain W3C validator