MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq0b Structured version   Visualization version   Unicode version

Theorem lspsneq0b 19013
Description: Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
lspsneq0b.v  |-  V  =  ( Base `  W
)
lspsneq0b.o  |-  .0.  =  ( 0g `  W )
lspsneq0b.n  |-  N  =  ( LSpan `  W )
lspsneq0b.w  |-  ( ph  ->  W  e.  LMod )
lspsneq0b.x  |-  ( ph  ->  X  e.  V )
lspsneq0b.y  |-  ( ph  ->  Y  e.  V )
lspsneq0b.e  |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y } ) )
Assertion
Ref Expression
lspsneq0b  |-  ( ph  ->  ( X  =  .0.  <->  Y  =  .0.  ) )

Proof of Theorem lspsneq0b
StepHypRef Expression
1 lspsneq0b.e . . . . 5  |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y } ) )
21adantr 481 . . . 4  |-  ( (
ph  /\  X  =  .0.  )  ->  ( N `
 { X }
)  =  ( N `
 { Y }
) )
3 lspsneq0b.w . . . . . 6  |-  ( ph  ->  W  e.  LMod )
4 lspsneq0b.x . . . . . 6  |-  ( ph  ->  X  e.  V )
5 lspsneq0b.v . . . . . . 7  |-  V  =  ( Base `  W
)
6 lspsneq0b.o . . . . . . 7  |-  .0.  =  ( 0g `  W )
7 lspsneq0b.n . . . . . . 7  |-  N  =  ( LSpan `  W )
85, 6, 7lspsneq0 19012 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( N `  { X } )  =  {  .0.  }  <->  X  =  .0.  ) )
93, 4, 8syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( N `  { X } )  =  {  .0.  }  <->  X  =  .0.  ) )
109biimpar 502 . . . 4  |-  ( (
ph  /\  X  =  .0.  )  ->  ( N `
 { X }
)  =  {  .0.  } )
112, 10eqtr3d 2658 . . 3  |-  ( (
ph  /\  X  =  .0.  )  ->  ( N `
 { Y }
)  =  {  .0.  } )
12 lspsneq0b.y . . . . 5  |-  ( ph  ->  Y  e.  V )
135, 6, 7lspsneq0 19012 . . . . 5  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( N `  { Y } )  =  {  .0.  }  <->  Y  =  .0.  ) )
143, 12, 13syl2anc 693 . . . 4  |-  ( ph  ->  ( ( N `  { Y } )  =  {  .0.  }  <->  Y  =  .0.  ) )
1514adantr 481 . . 3  |-  ( (
ph  /\  X  =  .0.  )  ->  ( ( N `  { Y } )  =  {  .0.  }  <->  Y  =  .0.  ) )
1611, 15mpbid 222 . 2  |-  ( (
ph  /\  X  =  .0.  )  ->  Y  =  .0.  )
171adantr 481 . . . 4  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( N `
 { X }
)  =  ( N `
 { Y }
) )
1814biimpar 502 . . . 4  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( N `
 { Y }
)  =  {  .0.  } )
1917, 18eqtrd 2656 . . 3  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( N `
 { X }
)  =  {  .0.  } )
209adantr 481 . . 3  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( ( N `  { X } )  =  {  .0.  }  <->  X  =  .0.  ) )
2119, 20mpbid 222 . 2  |-  ( (
ph  /\  Y  =  .0.  )  ->  X  =  .0.  )
2216, 21impbida 877 1  |-  ( ph  ->  ( X  =  .0.  <->  Y  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177   ` cfv 5888   Basecbs 15857   0gc0g 16100   LModclmod 18863   LSpanclspn 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972
This theorem is referenced by:  lspsneq  19122
  Copyright terms: Public domain W3C validator