| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltbtwnnq | Structured version Visualization version Unicode version | ||
| Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltbtwnnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 9748 |
. . . . 5
| |
| 2 | 1 | brel 5168 |
. . . 4
|
| 3 | 2 | simprd 479 |
. . 3
|
| 4 | ltexnq 9797 |
. . . 4
| |
| 5 | eleq1 2689 |
. . . . . . . . . 10
| |
| 6 | 5 | biimparc 504 |
. . . . . . . . 9
|
| 7 | addnqf 9770 |
. . . . . . . . . . 11
| |
| 8 | 7 | fdmi 6052 |
. . . . . . . . . 10
|
| 9 | 0nnq 9746 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | ndmovrcl 6820 |
. . . . . . . . 9
|
| 11 | 6, 10 | syl 17 |
. . . . . . . 8
|
| 12 | 11 | simprd 479 |
. . . . . . 7
|
| 13 | nsmallnq 9799 |
. . . . . . . 8
| |
| 14 | 11 | simpld 475 |
. . . . . . . . . . . 12
|
| 15 | 1 | brel 5168 |
. . . . . . . . . . . . 13
|
| 16 | 15 | simpld 475 |
. . . . . . . . . . . 12
|
| 17 | ltaddnq 9796 |
. . . . . . . . . . . 12
| |
| 18 | 14, 16, 17 | syl2an 494 |
. . . . . . . . . . 11
|
| 19 | ltanq 9793 |
. . . . . . . . . . . . . 14
| |
| 20 | 19 | biimpa 501 |
. . . . . . . . . . . . 13
|
| 21 | 14, 20 | sylan 488 |
. . . . . . . . . . . 12
|
| 22 | simplr 792 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | breqtrd 4679 |
. . . . . . . . . . 11
|
| 24 | ovex 6678 |
. . . . . . . . . . . 12
| |
| 25 | breq2 4657 |
. . . . . . . . . . . . 13
| |
| 26 | breq1 4656 |
. . . . . . . . . . . . 13
| |
| 27 | 25, 26 | anbi12d 747 |
. . . . . . . . . . . 12
|
| 28 | 24, 27 | spcev 3300 |
. . . . . . . . . . 11
|
| 29 | 18, 23, 28 | syl2anc 693 |
. . . . . . . . . 10
|
| 30 | 29 | ex 450 |
. . . . . . . . 9
|
| 31 | 30 | exlimdv 1861 |
. . . . . . . 8
|
| 32 | 13, 31 | syl5 34 |
. . . . . . 7
|
| 33 | 12, 32 | mpd 15 |
. . . . . 6
|
| 34 | 33 | ex 450 |
. . . . 5
|
| 35 | 34 | exlimdv 1861 |
. . . 4
|
| 36 | 4, 35 | sylbid 230 |
. . 3
|
| 37 | 3, 36 | mpcom 38 |
. 2
|
| 38 | ltsonq 9791 |
. . . 4
| |
| 39 | 38, 1 | sotri 5523 |
. . 3
|
| 40 | 39 | exlimiv 1858 |
. 2
|
| 41 | 37, 40 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-mq 9737 df-1nq 9738 df-rq 9739 df-ltnq 9740 |
| This theorem is referenced by: nqpr 9836 reclem2pr 9870 |
| Copyright terms: Public domain | W3C validator |