MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metds0 Structured version   Visualization version   Unicode version

Theorem metds0 22653
Description: If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
Assertion
Ref Expression
metds0  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( F `  A )  =  0 )
Distinct variable groups:    x, y, A    x, D, y    x, S, y    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem metds0
StepHypRef Expression
1 metdscn.f . . . . . . . . . 10  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
21metdsf 22651 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
323adant3 1081 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  F : X
--> ( 0 [,] +oo ) )
4 ssel2 3598 . . . . . . . . 9  |-  ( ( S  C_  X  /\  A  e.  S )  ->  A  e.  X )
543adant1 1079 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  A  e.  X )
63, 5ffvelrnd 6360 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( F `  A )  e.  ( 0 [,] +oo )
)
7 elxrge0 12281 . . . . . . . 8  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  <->  ( ( F `
 A )  e. 
RR*  /\  0  <_  ( F `  A ) ) )
87simplbi 476 . . . . . . 7  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  ( F `
 A )  e. 
RR* )
96, 8syl 17 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( F `  A )  e.  RR* )
10 xrleid 11983 . . . . . 6  |-  ( ( F `  A )  e.  RR*  ->  ( F `
 A )  <_ 
( F `  A
) )
119, 10syl 17 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( F `  A )  <_  ( F `  A )
)
12 simp1 1061 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  D  e.  ( *Met `  X
) )
13 simp2 1062 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  S  C_  X
)
141metdsge 22652 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  e.  RR* )  ->  ( ( F `
 A )  <_ 
( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )  =  (/) ) )
1512, 13, 5, 9, 14syl31anc 1329 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( ( F `  A )  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )  =  (/) ) )
1611, 15mpbid 222 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( S  i^i  ( A ( ball `  D ) ( F `
 A ) ) )  =  (/) )
17 simpl3 1066 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  S
)  /\  0  <  ( F `  A ) )  ->  A  e.  S )
1812adantr 481 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  S
)  /\  0  <  ( F `  A ) )  ->  D  e.  ( *Met `  X
) )
195adantr 481 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  S
)  /\  0  <  ( F `  A ) )  ->  A  e.  X )
209adantr 481 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  S
)  /\  0  <  ( F `  A ) )  ->  ( F `  A )  e.  RR* )
21 simpr 477 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  S
)  /\  0  <  ( F `  A ) )  ->  0  <  ( F `  A ) )
22 xblcntr 22216 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  ( ( F `  A )  e.  RR*  /\  0  <  ( F `
 A ) ) )  ->  A  e.  ( A ( ball `  D
) ( F `  A ) ) )
2318, 19, 20, 21, 22syl112anc 1330 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  S
)  /\  0  <  ( F `  A ) )  ->  A  e.  ( A ( ball `  D
) ( F `  A ) ) )
24 inelcm 4032 . . . . . . 7  |-  ( ( A  e.  S  /\  A  e.  ( A
( ball `  D )
( F `  A
) ) )  -> 
( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )  =/=  (/) )
2517, 23, 24syl2anc 693 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  S
)  /\  0  <  ( F `  A ) )  ->  ( S  i^i  ( A ( ball `  D ) ( F `
 A ) ) )  =/=  (/) )
2625ex 450 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( 0  <  ( F `  A )  ->  ( S  i^i  ( A (
ball `  D )
( F `  A
) ) )  =/=  (/) ) )
2726necon2bd 2810 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( ( S  i^i  ( A (
ball `  D )
( F `  A
) ) )  =  (/)  ->  -.  0  <  ( F `  A ) ) )
2816, 27mpd 15 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  -.  0  <  ( F `  A
) )
297simprbi 480 . . . . . 6  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  0  <_ 
( F `  A
) )
306, 29syl 17 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  0  <_  ( F `  A ) )
31 0xr 10086 . . . . . 6  |-  0  e.  RR*
32 xrleloe 11977 . . . . . 6  |-  ( ( 0  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  (
0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
3331, 9, 32sylancr 695 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( 0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
3430, 33mpbid 222 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) )
3534ord 392 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( -.  0  <  ( F `  A )  ->  0  =  ( F `  A ) ) )
3628, 35mpd 15 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  0  =  ( F `  A ) )
3736eqcomd 2628 1  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( F `  A )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,]cicc 12178   *Metcxmt 19731   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-psmet 19738  df-xmet 19739  df-bl 19741
This theorem is referenced by:  metdsle  22655  metnrmlem1  22662
  Copyright terms: Public domain W3C validator