MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsge Structured version   Visualization version   Unicode version

Theorem metdsge 22652
Description: The distance from the point  A to the set  S is greater than  R iff the  R-ball around  A misses  S. (Contributed by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
Assertion
Ref Expression
metdsge  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( R  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) R ) )  =  (/) ) )
Distinct variable groups:    x, y, A    x, D, y    x, S, y    x, X, y
Allowed substitution hints:    R( x, y)    F( x, y)

Proof of Theorem metdsge
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1066 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  A  e.  X )
2 metdscn.f . . . . 5  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
32metdsval 22650 . . . 4  |-  ( A  e.  X  ->  ( F `  A )  = inf ( ran  ( y  e.  S  |->  ( A D y ) ) ,  RR* ,  <  )
)
41, 3syl 17 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( F `  A )  = inf ( ran  ( y  e.  S  |->  ( A D y ) ) ,  RR* ,  <  ) )
54breq2d 4665 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( R  <_  ( F `  A
)  <->  R  <_ inf ( ran  ( y  e.  S  |->  ( A D y ) ) ,  RR* ,  <  ) ) )
6 simpll1 1100 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  D  e.  ( *Met `  X ) )
71adantr 481 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  A  e.  X )
8 simpl2 1065 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  S  C_  X
)
98sselda 3603 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  w  e.  X )
10 xmetcl 22136 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  w  e.  X
)  ->  ( A D w )  e. 
RR* )
116, 7, 9, 10syl3anc 1326 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  ( A D w )  e. 
RR* )
12 oveq2 6658 . . . . . 6  |-  ( y  =  w  ->  ( A D y )  =  ( A D w ) )
1312cbvmptv 4750 . . . . 5  |-  ( y  e.  S  |->  ( A D y ) )  =  ( w  e.  S  |->  ( A D w ) )
1411, 13fmptd 6385 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( y  e.  S  |->  ( A D y ) ) : S --> RR* )
15 frn 6053 . . . 4  |-  ( ( y  e.  S  |->  ( A D y ) ) : S --> RR*  ->  ran  ( y  e.  S  |->  ( A D y ) )  C_  RR* )
1614, 15syl 17 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ran  ( y  e.  S  |->  ( A D y ) ) 
C_  RR* )
17 simpr 477 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  R  e.  RR* )
18 infxrgelb 12165 . . 3  |-  ( ( ran  ( y  e.  S  |->  ( A D y ) )  C_  RR* 
/\  R  e.  RR* )  ->  ( R  <_ inf ( ran  ( y  e.  S  |->  ( A D y ) ) , 
RR* ,  <  )  <->  A. z  e.  ran  ( y  e.  S  |->  ( A D y ) ) R  <_  z ) )
1916, 17, 18syl2anc 693 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( R  <_ inf ( ran  ( y  e.  S  |->  ( A D y ) ) ,  RR* ,  <  )  <->  A. z  e.  ran  (
y  e.  S  |->  ( A D y ) ) R  <_  z
) )
2017adantr 481 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  R  e.  RR* )
21 elbl2 22195 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( A  e.  X  /\  w  e.  X ) )  -> 
( w  e.  ( A ( ball `  D
) R )  <->  ( A D w )  < 
R ) )
226, 20, 7, 9, 21syl22anc 1327 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  (
w  e.  ( A ( ball `  D
) R )  <->  ( A D w )  < 
R ) )
23 xrltnle 10105 . . . . . . 7  |-  ( ( ( A D w )  e.  RR*  /\  R  e.  RR* )  ->  (
( A D w )  <  R  <->  -.  R  <_  ( A D w ) ) )
2411, 20, 23syl2anc 693 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  (
( A D w )  <  R  <->  -.  R  <_  ( A D w ) ) )
2522, 24bitrd 268 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  (
w  e.  ( A ( ball `  D
) R )  <->  -.  R  <_  ( A D w ) ) )
2625con2bid 344 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  R  e.  RR* )  /\  w  e.  S )  ->  ( R  <_  ( A D w )  <->  -.  w  e.  ( A ( ball `  D ) R ) ) )
2726ralbidva 2985 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( A. w  e.  S  R  <_  ( A D w )  <->  A. w  e.  S  -.  w  e.  ( A ( ball `  D
) R ) ) )
28 ovex 6678 . . . . 5  |-  ( A D w )  e. 
_V
2928rgenw 2924 . . . 4  |-  A. w  e.  S  ( A D w )  e. 
_V
30 breq2 4657 . . . . 5  |-  ( z  =  ( A D w )  ->  ( R  <_  z  <->  R  <_  ( A D w ) ) )
3113, 30ralrnmpt 6368 . . . 4  |-  ( A. w  e.  S  ( A D w )  e. 
_V  ->  ( A. z  e.  ran  ( y  e.  S  |->  ( A D y ) ) R  <_  z  <->  A. w  e.  S  R  <_  ( A D w ) ) )
3229, 31ax-mp 5 . . 3  |-  ( A. z  e.  ran  ( y  e.  S  |->  ( A D y ) ) R  <_  z  <->  A. w  e.  S  R  <_  ( A D w ) )
33 disj 4017 . . 3  |-  ( ( S  i^i  ( A ( ball `  D
) R ) )  =  (/)  <->  A. w  e.  S  -.  w  e.  ( A ( ball `  D
) R ) )
3427, 32, 333bitr4g 303 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( A. z  e.  ran  ( y  e.  S  |->  ( A D y ) ) R  <_  z  <->  ( S  i^i  ( A ( ball `  D ) R ) )  =  (/) ) )
355, 19, 343bitrd 294 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  R  e.  RR* )  ->  ( R  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) R ) )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   RR*cxr 10073    < clt 10074    <_ cle 10075   *Metcxmt 19731   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-psmet 19738  df-xmet 19739  df-bl 19741
This theorem is referenced by:  metds0  22653  metdstri  22654  metdseq0  22657  lebnumlem3  22762
  Copyright terms: Public domain W3C validator