MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsf Structured version   Visualization version   Unicode version

Theorem metdsf 22651
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
Assertion
Ref Expression
metdsf  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
Distinct variable groups:    x, y, D    x, S, y    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem metdsf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simplll 798 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  x  e.  X )  /\  y  e.  S )  ->  D  e.  ( *Met `  X ) )
2 simplr 792 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  x  e.  X )  /\  y  e.  S )  ->  x  e.  X )
3 simplr 792 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  S  C_  X )
43sselda 3603 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  x  e.  X )  /\  y  e.  S )  ->  y  e.  X )
5 xmetcl 22136 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x D y )  e. 
RR* )
61, 2, 4, 5syl3anc 1326 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  x  e.  X )  /\  y  e.  S )  ->  (
x D y )  e.  RR* )
7 eqid 2622 . . . . . 6  |-  ( y  e.  S  |->  ( x D y ) )  =  ( y  e.  S  |->  ( x D y ) )
86, 7fmptd 6385 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  (
y  e.  S  |->  ( x D y ) ) : S --> RR* )
9 frn 6053 . . . . 5  |-  ( ( y  e.  S  |->  ( x D y ) ) : S --> RR*  ->  ran  ( y  e.  S  |->  ( x D y ) )  C_  RR* )
108, 9syl 17 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  ran  ( y  e.  S  |->  ( x D y ) )  C_  RR* )
11 infxrcl 12163 . . . 4  |-  ( ran  ( y  e.  S  |->  ( x D y ) )  C_  RR*  -> inf ( ran  ( y  e.  S  |->  ( x D y ) ) , 
RR* ,  <  )  e. 
RR* )
1210, 11syl 17 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  -> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )  e.  RR* )
13 xmetge0 22149 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x D y ) )
141, 2, 4, 13syl3anc 1326 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X )  /\  x  e.  X )  /\  y  e.  S )  ->  0  <_  ( x D y ) )
1514ralrimiva 2966 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  A. y  e.  S  0  <_  ( x D y ) )
16 ovex 6678 . . . . . . 7  |-  ( x D y )  e. 
_V
1716rgenw 2924 . . . . . 6  |-  A. y  e.  S  ( x D y )  e. 
_V
18 breq2 4657 . . . . . . 7  |-  ( z  =  ( x D y )  ->  (
0  <_  z  <->  0  <_  ( x D y ) ) )
197, 18ralrnmpt 6368 . . . . . 6  |-  ( A. y  e.  S  (
x D y )  e.  _V  ->  ( A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_ 
z  <->  A. y  e.  S 
0  <_  ( x D y ) ) )
2017, 19ax-mp 5 . . . . 5  |-  ( A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_  z  <->  A. y  e.  S  0  <_  ( x D y ) )
2115, 20sylibr 224 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_  z )
22 0xr 10086 . . . . 5  |-  0  e.  RR*
23 infxrgelb 12165 . . . . 5  |-  ( ( ran  ( y  e.  S  |->  ( x D y ) )  C_  RR* 
/\  0  e.  RR* )  ->  ( 0  <_ inf ( ran  ( y  e.  S  |->  ( x D y ) ) , 
RR* ,  <  )  <->  A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_  z ) )
2410, 22, 23sylancl 694 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  (
0  <_ inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )  <->  A. z  e.  ran  ( y  e.  S  |->  ( x D y ) ) 0  <_  z ) )
2521, 24mpbird 247 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  ->  0  <_ inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
26 elxrge0 12281 . . 3  |-  (inf ( ran  ( y  e.  S  |->  ( x D y ) ) , 
RR* ,  <  )  e.  ( 0 [,] +oo ) 
<->  (inf ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )  e.  RR*  /\  0  <_ inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
) )
2712, 25, 26sylanbrc 698 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  x  e.  X )  -> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )  e.  ( 0 [,] +oo )
)
28 metdscn.f . 2  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
2927, 28fmptd 6385 1  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,]cicc 12178   *Metcxmt 19731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-xmet 19739
This theorem is referenced by:  metds0  22653  metdstri  22654  metdsre  22656  metdseq0  22657  metdscnlem  22658  metdscn  22659  metnrmlem1a  22661  metnrmlem1  22662  lebnumlem1  22760
  Copyright terms: Public domain W3C validator