MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1 Structured version   Visualization version   Unicode version

Theorem metnrmlem1 22662
Description: Lemma for metnrm 22665. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
metdscn.j  |-  J  =  ( MetOpen `  D )
metnrmlem.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
metnrmlem.2  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
metnrmlem.3  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
metnrmlem.4  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
Assertion
Ref Expression
metnrmlem1  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  if ( 1  <_  ( F `  B ) ,  1 ,  ( F `  B ) )  <_  ( A D B ) )
Distinct variable groups:    x, y, A    x, D, y    y, J    x, B, y    x, T, y    x, S, y   
x, X, y
Allowed substitution hints:    ph( x, y)    F( x, y)    J( x)

Proof of Theorem metnrmlem1
StepHypRef Expression
1 1re 10039 . . . 4  |-  1  e.  RR
21rexri 10097 . . 3  |-  1  e.  RR*
3 metnrmlem.1 . . . . . . 7  |-  ( ph  ->  D  e.  ( *Met `  X ) )
43adantr 481 . . . . . 6  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  D  e.  ( *Met `  X ) )
5 metnrmlem.2 . . . . . . . . 9  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
65adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  S  e.  ( Clsd `  J ) )
7 eqid 2622 . . . . . . . . 9  |-  U. J  =  U. J
87cldss 20833 . . . . . . . 8  |-  ( S  e.  ( Clsd `  J
)  ->  S  C_  U. J
)
96, 8syl 17 . . . . . . 7  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  S  C_  U. J )
10 metdscn.j . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
1110mopnuni 22246 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
124, 11syl 17 . . . . . . 7  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  X  =  U. J )
139, 12sseqtr4d 3642 . . . . . 6  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  S  C_  X )
14 metdscn.f . . . . . . 7  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
1514metdsf 22651 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
164, 13, 15syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  F : X --> ( 0 [,] +oo ) )
17 metnrmlem.3 . . . . . . . . 9  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
1817adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  T  e.  ( Clsd `  J ) )
197cldss 20833 . . . . . . . 8  |-  ( T  e.  ( Clsd `  J
)  ->  T  C_  U. J
)
2018, 19syl 17 . . . . . . 7  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  T  C_  U. J )
2120, 12sseqtr4d 3642 . . . . . 6  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  T  C_  X )
22 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  B  e.  T )
2321, 22sseldd 3604 . . . . 5  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  B  e.  X )
2416, 23ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( F `  B
)  e.  ( 0 [,] +oo ) )
25 elxrge0 12281 . . . . 5  |-  ( ( F `  B )  e.  ( 0 [,] +oo )  <->  ( ( F `
 B )  e. 
RR*  /\  0  <_  ( F `  B ) ) )
2625simplbi 476 . . . 4  |-  ( ( F `  B )  e.  ( 0 [,] +oo )  ->  ( F `
 B )  e. 
RR* )
2724, 26syl 17 . . 3  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( F `  B
)  e.  RR* )
28 ifcl 4130 . . 3  |-  ( ( 1  e.  RR*  /\  ( F `  B )  e.  RR* )  ->  if ( 1  <_  ( F `  B ) ,  1 ,  ( F `  B ) )  e.  RR* )
292, 27, 28sylancr 695 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  if ( 1  <_  ( F `  B ) ,  1 ,  ( F `  B ) )  e.  RR* )
30 simprl 794 . . . 4  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  A  e.  S )
3113, 30sseldd 3604 . . 3  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  A  e.  X )
32 xmetcl 22136 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  e.  RR* )
334, 31, 23, 32syl3anc 1326 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( A D B )  e.  RR* )
34 xrmin2 12009 . . 3  |-  ( ( 1  e.  RR*  /\  ( F `  B )  e.  RR* )  ->  if ( 1  <_  ( F `  B ) ,  1 ,  ( F `  B ) )  <_  ( F `  B ) )
352, 27, 34sylancr 695 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  if ( 1  <_  ( F `  B ) ,  1 ,  ( F `  B ) )  <_  ( F `  B ) )
3614metdstri 22654 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  ( B  e.  X  /\  A  e.  X ) )  -> 
( F `  B
)  <_  ( ( B D A ) +e ( F `  A ) ) )
374, 13, 23, 31, 36syl22anc 1327 . . 3  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( F `  B
)  <_  ( ( B D A ) +e ( F `  A ) ) )
38 xmetsym 22152 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( B D A )  =  ( A D B ) )
394, 23, 31, 38syl3anc 1326 . . . . 5  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( B D A )  =  ( A D B ) )
4014metds0 22653 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  S
)  ->  ( F `  A )  =  0 )
414, 13, 30, 40syl3anc 1326 . . . . 5  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( F `  A
)  =  0 )
4239, 41oveq12d 6668 . . . 4  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( ( B D A ) +e
( F `  A
) )  =  ( ( A D B ) +e 0 ) )
43 xaddid1 12072 . . . . 5  |-  ( ( A D B )  e.  RR*  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
4433, 43syl 17 . . . 4  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( ( A D B ) +e 0 )  =  ( A D B ) )
4542, 44eqtrd 2656 . . 3  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( ( B D A ) +e
( F `  A
) )  =  ( A D B ) )
4637, 45breqtrd 4679 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( F `  B
)  <_  ( A D B ) )
4729, 27, 33, 35, 46xrletrd 11993 1  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  T ) )  ->  if ( 1  <_  ( F `  B ) ,  1 ,  ( F `  B ) )  <_  ( A D B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   0cc0 9936   1c1 9937   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   +ecxad 11944   [,]cicc 12178   *Metcxmt 19731   MetOpencmopn 19736   Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823
This theorem is referenced by:  metnrmlem3  22664
  Copyright terms: Public domain W3C validator