MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2psrpr Structured version   Visualization version   Unicode version

Theorem map2psrpr 9931
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
map2psrpr.2  |-  C  e. 
R.
Assertion
Ref Expression
map2psrpr  |-  ( ( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
Distinct variable groups:    x, A    x, C

Proof of Theorem map2psrpr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 9889 . . . . 5  |-  <R  C_  ( R.  X.  R. )
21brel 5168 . . . 4  |-  ( ( C  +R  -1R )  <R  A  ->  ( ( C  +R  -1R )  e. 
R.  /\  A  e.  R. ) )
32simprd 479 . . 3  |-  ( ( C  +R  -1R )  <R  A  ->  A  e.  R. )
4 map2psrpr.2 . . . . . 6  |-  C  e. 
R.
5 ltasr 9921 . . . . . 6  |-  ( C  e.  R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  <->  ( C  +R  -1R )  <R  ( C  +R  ( ( C  .R  -1R )  +R  A ) ) ) )
64, 5ax-mp 5 . . . . 5  |-  ( -1R 
<R  ( ( C  .R  -1R )  +R  A
)  <->  ( C  +R  -1R )  <R  ( C  +R  ( ( C  .R  -1R )  +R  A ) ) )
7 pn0sr 9922 . . . . . . . . . 10  |-  ( C  e.  R.  ->  ( C  +R  ( C  .R  -1R ) )  =  0R )
84, 7ax-mp 5 . . . . . . . . 9  |-  ( C  +R  ( C  .R  -1R ) )  =  0R
98oveq1i 6660 . . . . . . . 8  |-  ( ( C  +R  ( C  .R  -1R ) )  +R  A )  =  ( 0R  +R  A
)
10 addasssr 9909 . . . . . . . 8  |-  ( ( C  +R  ( C  .R  -1R ) )  +R  A )  =  ( C  +R  (
( C  .R  -1R )  +R  A ) )
11 addcomsr 9908 . . . . . . . 8  |-  ( 0R 
+R  A )  =  ( A  +R  0R )
129, 10, 113eqtr3i 2652 . . . . . . 7  |-  ( C  +R  ( ( C  .R  -1R )  +R  A ) )  =  ( A  +R  0R )
13 0idsr 9918 . . . . . . 7  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
1412, 13syl5eq 2668 . . . . . 6  |-  ( A  e.  R.  ->  ( C  +R  ( ( C  .R  -1R )  +R  A ) )  =  A )
1514breq2d 4665 . . . . 5  |-  ( A  e.  R.  ->  (
( C  +R  -1R )  <R  ( C  +R  ( ( C  .R  -1R )  +R  A
) )  <->  ( C  +R  -1R )  <R  A ) )
166, 15syl5bb 272 . . . 4  |-  ( A  e.  R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  <->  ( C  +R  -1R )  <R  A ) )
17 m1r 9903 . . . . . . . 8  |-  -1R  e.  R.
18 mulclsr 9905 . . . . . . . 8  |-  ( ( C  e.  R.  /\  -1R  e.  R. )  -> 
( C  .R  -1R )  e.  R. )
194, 17, 18mp2an 708 . . . . . . 7  |-  ( C  .R  -1R )  e. 
R.
20 addclsr 9904 . . . . . . 7  |-  ( ( ( C  .R  -1R )  e.  R.  /\  A  e.  R. )  ->  (
( C  .R  -1R )  +R  A )  e. 
R. )
2119, 20mpan 706 . . . . . 6  |-  ( A  e.  R.  ->  (
( C  .R  -1R )  +R  A )  e. 
R. )
22 df-nr 9878 . . . . . . 7  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
23 breq2 4657 . . . . . . . 8  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( -1R  <R  [ <. y ,  z >. ]  ~R  <->  -1R 
<R  ( ( C  .R  -1R )  +R  A
) ) )
24 eqeq2 2633 . . . . . . . . 9  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
2524rexbidv 3052 . . . . . . . 8  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  E. x  e.  P.  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
2623, 25imbi12d 334 . . . . . . 7  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  (
( -1R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  ) 
<->  ( -1R  <R  (
( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) ) )
27 df-m1r 9884 . . . . . . . . . . 11  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
2827breq1i 4660 . . . . . . . . . 10  |-  ( -1R 
<R  [ <. y ,  z
>. ]  ~R  <->  [ <. 1P , 
( 1P  +P.  1P ) >. ]  ~R  <R  [
<. y ,  z >. ]  ~R  )
29 addasspr 9844 . . . . . . . . . . . 12  |-  ( ( 1P  +P.  1P )  +P.  y )  =  ( 1P  +P.  ( 1P  +P.  y ) )
3029breq2i 4661 . . . . . . . . . . 11  |-  ( ( 1P  +P.  z ) 
<P  ( ( 1P  +P.  1P )  +P.  y )  <-> 
( 1P  +P.  z
)  <P  ( 1P  +P.  ( 1P  +P.  y ) ) )
31 ltsrpr 9898 . . . . . . . . . . 11  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  <R  [ <. y ,  z
>. ]  ~R  <->  ( 1P  +P.  z )  <P  (
( 1P  +P.  1P )  +P.  y ) )
32 1pr 9837 . . . . . . . . . . . 12  |-  1P  e.  P.
33 ltapr 9867 . . . . . . . . . . . 12  |-  ( 1P  e.  P.  ->  (
z  <P  ( 1P  +P.  y )  <->  ( 1P  +P.  z )  <P  ( 1P  +P.  ( 1P  +P.  y ) ) ) )
3432, 33ax-mp 5 . . . . . . . . . . 11  |-  ( z 
<P  ( 1P  +P.  y
)  <->  ( 1P  +P.  z )  <P  ( 1P  +P.  ( 1P  +P.  y ) ) )
3530, 31, 343bitr4i 292 . . . . . . . . . 10  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  <R  [ <. y ,  z
>. ]  ~R  <->  z  <P  ( 1P  +P.  y ) )
3628, 35bitri 264 . . . . . . . . 9  |-  ( -1R 
<R  [ <. y ,  z
>. ]  ~R  <->  z  <P  ( 1P  +P.  y ) )
37 ltexpri 9865 . . . . . . . . 9  |-  ( z 
<P  ( 1P  +P.  y
)  ->  E. x  e.  P.  ( z  +P.  x )  =  ( 1P  +P.  y ) )
3836, 37sylbi 207 . . . . . . . 8  |-  ( -1R 
<R  [ <. y ,  z
>. ]  ~R  ->  E. x  e.  P.  ( z  +P.  x )  =  ( 1P  +P.  y ) )
39 enreceq 9887 . . . . . . . . . . . 12  |-  ( ( ( x  e.  P.  /\  1P  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  ( x  +P.  z )  =  ( 1P  +P.  y ) ) )
4032, 39mpanl2 717 . . . . . . . . . . 11  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  ( x  +P.  z )  =  ( 1P  +P.  y ) ) )
41 addcompr 9843 . . . . . . . . . . . 12  |-  ( z  +P.  x )  =  ( x  +P.  z
)
4241eqeq1i 2627 . . . . . . . . . . 11  |-  ( ( z  +P.  x )  =  ( 1P  +P.  y )  <->  ( x  +P.  z )  =  ( 1P  +P.  y ) )
4340, 42syl6bbr 278 . . . . . . . . . 10  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  ( z  +P.  x )  =  ( 1P  +P.  y ) ) )
4443ancoms 469 . . . . . . . . 9  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  x  e.  P. )  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z
>. ]  ~R  <->  ( z  +P.  x )  =  ( 1P  +P.  y ) ) )
4544rexbidva 3049 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. x  e. 
P.  [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z
>. ]  ~R  <->  E. x  e.  P.  ( z  +P.  x )  =  ( 1P  +P.  y ) ) )
4638, 45syl5ibr 236 . . . . . . 7  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( -1R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  ) )
4722, 26, 46ecoptocl 7837 . . . . . 6  |-  ( ( ( C  .R  -1R )  +R  A )  e. 
R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
4821, 47syl 17 . . . . 5  |-  ( A  e.  R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A
) ) )
49 oveq2 6658 . . . . . . . 8  |-  ( [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  ( C  +R  ( ( C  .R  -1R )  +R  A
) ) )
5049, 14sylan9eqr 2678 . . . . . . 7  |-  ( ( A  e.  R.  /\  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) )  -> 
( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
5150ex 450 . . . . . 6  |-  ( A  e.  R.  ->  ( [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  -> 
( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A ) )
5251reximdv 3016 . . . . 5  |-  ( A  e.  R.  ->  ( E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
5348, 52syld 47 . . . 4  |-  ( A  e.  R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
5416, 53sylbird 250 . . 3  |-  ( A  e.  R.  ->  (
( C  +R  -1R )  <R  A  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
553, 54mpcom 38 . 2  |-  ( ( C  +R  -1R )  <R  A  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A )
564mappsrpr 9929 . . . . 5  |-  ( ( C  +R  -1R )  <R  ( C  +R  [ <. x ,  1P >. ]  ~R  )  <->  x  e.  P. )
57 breq2 4657 . . . . 5  |-  ( ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A  ->  ( ( C  +R  -1R )  <R  ( C  +R  [
<. x ,  1P >. ]  ~R  )  <->  ( C  +R  -1R )  <R  A ) )
5856, 57syl5bbr 274 . . . 4  |-  ( ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A  ->  ( x  e.  P.  <->  ( C  +R  -1R )  <R  A ) )
5958biimpac 503 . . 3  |-  ( ( x  e.  P.  /\  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )  ->  ( C  +R  -1R )  <R  A )
6059rexlimiva 3028 . 2  |-  ( E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A  ->  ( C  +R  -1R )  <R  A )
6155, 60impbii 199 1  |-  ( ( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   <.cop 4183   class class class wbr 4653  (class class class)co 6650   [cec 7740   P.cnp 9681   1Pc1p 9682    +P. cpp 9683    <P cltp 9685    ~R cer 9686   R.cnr 9687   0Rc0r 9688   -1Rcm1r 9690    +R cplr 9691    .R cmr 9692    <R cltr 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-plp 9805  df-mp 9806  df-ltp 9807  df-enr 9877  df-nr 9878  df-plr 9879  df-mr 9880  df-ltr 9881  df-0r 9882  df-1r 9883  df-m1r 9884
This theorem is referenced by:  supsrlem  9932
  Copyright terms: Public domain W3C validator