MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgfval Structured version   Visualization version   Unicode version

Theorem mulgfval 17542
Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( invg `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgfval  |-  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
Distinct variable groups:    x, n,  .0.    n, G, x    n, I, x    B, n, x
Allowed substitution hints:    .+ ( x, n)    .x. ( x, n)

Proof of Theorem mulgfval
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2  |-  .x.  =  (.g
`  G )
2 eqidd 2623 . . . . 5  |-  ( w  =  G  ->  ZZ  =  ZZ )
3 fveq2 6191 . . . . . 6  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
4 mulgval.b . . . . . 6  |-  B  =  ( Base `  G
)
53, 4syl6eqr 2674 . . . . 5  |-  ( w  =  G  ->  ( Base `  w )  =  B )
6 fveq2 6191 . . . . . . 7  |-  ( w  =  G  ->  ( 0g `  w )  =  ( 0g `  G
) )
7 mulgval.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
86, 7syl6eqr 2674 . . . . . 6  |-  ( w  =  G  ->  ( 0g `  w )  =  .0.  )
9 seqex 12803 . . . . . . . 8  |-  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  e.  _V
109a1i 11 . . . . . . 7  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  e. 
_V )
11 id 22 . . . . . . . . . 10  |-  ( s  =  seq 1 ( ( +g  `  w
) ,  ( NN 
X.  { x }
) )  ->  s  =  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) ) )
12 fveq2 6191 . . . . . . . . . . . 12  |-  ( w  =  G  ->  ( +g  `  w )  =  ( +g  `  G
) )
13 mulgval.p . . . . . . . . . . . 12  |-  .+  =  ( +g  `  G )
1412, 13syl6eqr 2674 . . . . . . . . . . 11  |-  ( w  =  G  ->  ( +g  `  w )  = 
.+  )
1514seqeq2d 12808 . . . . . . . . . 10  |-  ( w  =  G  ->  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  =  seq 1 (  .+  ,  ( NN  X.  { x } ) ) )
1611, 15sylan9eqr 2678 . . . . . . . . 9  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
s  =  seq 1
(  .+  ,  ( NN  X.  { x }
) ) )
1716fveq1d 6193 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) )
18 simpl 473 . . . . . . . . . . 11  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  w  =  G )
1918fveq2d 6195 . . . . . . . . . 10  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  ( invg `  G
) )
20 mulgval.i . . . . . . . . . 10  |-  I  =  ( invg `  G )
2119, 20syl6eqr 2674 . . . . . . . . 9  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( invg `  w )  =  I )
2216fveq1d 6193 . . . . . . . . 9  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( s `  -u n
)  =  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )
2321, 22fveq12d 6197 . . . . . . . 8  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  -> 
( ( invg `  w ) `  (
s `  -u n ) )  =  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) )
2417, 23ifeq12d 4106 . . . . . . 7  |-  ( ( w  =  G  /\  s  =  seq 1
( ( +g  `  w
) ,  ( NN 
X.  { x }
) ) )  ->  if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `  (
s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )
2510, 24csbied 3560 . . . . . 6  |-  ( w  =  G  ->  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) )  =  if ( 0  <  n ,  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  n ) ,  ( I `  (  seq 1 (  .+  ,  ( NN  X.  { x } ) ) `  -u n
) ) ) )
268, 25ifeq12d 4106 . . . . 5  |-  ( w  =  G  ->  if ( n  =  0 ,  ( 0g `  w ) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) )  =  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
272, 5, 26mpt2eq123dv 6717 . . . 4  |-  ( w  =  G  ->  (
n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
28 df-mulg 17541 . . . 4  |- .g  =  (
w  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  w )  |->  if ( n  =  0 ,  ( 0g `  w
) ,  [_  seq 1 ( ( +g  `  w ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  w ) `
 ( s `  -u n ) ) ) ) ) )
29 zex 11386 . . . . 5  |-  ZZ  e.  _V
30 fvex 6201 . . . . . 6  |-  ( Base `  G )  e.  _V
314, 30eqeltri 2697 . . . . 5  |-  B  e. 
_V
3229, 31mpt2ex 7247 . . . 4  |-  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  e.  _V
3327, 28, 32fvmpt 6282 . . 3  |-  ( G  e.  _V  ->  (.g `  G )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
34 fvprc 6185 . . . 4  |-  ( -.  G  e.  _V  ->  (.g `  G )  =  (/) )
35 eqid 2622 . . . . . . 7  |-  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
36 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
377, 36eqeltri 2697 . . . . . . . 8  |-  .0.  e.  _V
38 fvex 6201 . . . . . . . . 9  |-  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n )  e. 
_V
39 fvex 6201 . . . . . . . . 9  |-  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) )  e.  _V
4038, 39ifex 4156 . . . . . . . 8  |-  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) )  e. 
_V
4137, 40ifex 4156 . . . . . . 7  |-  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )  e.  _V
4235, 41fnmpt2i 7239 . . . . . 6  |-  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  Fn  ( ZZ 
X.  B )
43 fvprc 6185 . . . . . . . . . 10  |-  ( -.  G  e.  _V  ->  (
Base `  G )  =  (/) )
444, 43syl5eq 2668 . . . . . . . . 9  |-  ( -.  G  e.  _V  ->  B  =  (/) )
4544xpeq2d 5139 . . . . . . . 8  |-  ( -.  G  e.  _V  ->  ( ZZ  X.  B )  =  ( ZZ  X.  (/) ) )
46 xp0 5552 . . . . . . . 8  |-  ( ZZ 
X.  (/) )  =  (/)
4745, 46syl6eq 2672 . . . . . . 7  |-  ( -.  G  e.  _V  ->  ( ZZ  X.  B )  =  (/) )
4847fneq2d 5982 . . . . . 6  |-  ( -.  G  e.  _V  ->  ( ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  Fn  ( ZZ 
X.  B )  <->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  < 
n ,  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) ,  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) ) ) ) )  Fn  (/) ) )
4942, 48mpbii 223 . . . . 5  |-  ( -.  G  e.  _V  ->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  Fn  (/) )
50 fn0 6011 . . . . 5  |-  ( ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  Fn  (/)  <->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  < 
n ,  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) ,  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) ) ) ) )  =  (/) )
5149, 50sylib 208 . . . 4  |-  ( -.  G  e.  _V  ->  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )  =  (/) )
5234, 51eqtr4d 2659 . . 3  |-  ( -.  G  e.  _V  ->  (.g `  G )  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) ) )
5333, 52pm2.61i 176 . 2  |-  (.g `  G
)  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
541, 53eqtri 2644 1  |-  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    X. cxp 5112    Fn wfn 5883   ` cfv 5888    |-> cmpt2 6652   0cc0 9936   1c1 9937    < clt 10074   -ucneg 10267   NNcn 11020   ZZcz 11377    seqcseq 12801   Basecbs 15857   +g cplusg 15941   0gc0g 16100   invgcminusg 17423  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-neg 10269  df-z 11378  df-seq 12802  df-mulg 17541
This theorem is referenced by:  mulgval  17543  mulgfn  17544  mulgpropd  17584
  Copyright terms: Public domain W3C validator