| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgfval | Structured version Visualization version Unicode version | ||
| Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgval.b |
|
| mulgval.p |
|
| mulgval.o |
|
| mulgval.i |
|
| mulgval.t |
|
| Ref | Expression |
|---|---|
| mulgfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.t |
. 2
| |
| 2 | eqidd 2623 |
. . . . 5
| |
| 3 | fveq2 6191 |
. . . . . 6
| |
| 4 | mulgval.b |
. . . . . 6
| |
| 5 | 3, 4 | syl6eqr 2674 |
. . . . 5
|
| 6 | fveq2 6191 |
. . . . . . 7
| |
| 7 | mulgval.o |
. . . . . . 7
| |
| 8 | 6, 7 | syl6eqr 2674 |
. . . . . 6
|
| 9 | seqex 12803 |
. . . . . . . 8
| |
| 10 | 9 | a1i 11 |
. . . . . . 7
|
| 11 | id 22 |
. . . . . . . . . 10
| |
| 12 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 13 | mulgval.p |
. . . . . . . . . . . 12
| |
| 14 | 12, 13 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 15 | 14 | seqeq2d 12808 |
. . . . . . . . . 10
|
| 16 | 11, 15 | sylan9eqr 2678 |
. . . . . . . . 9
|
| 17 | 16 | fveq1d 6193 |
. . . . . . . 8
|
| 18 | simpl 473 |
. . . . . . . . . . 11
| |
| 19 | 18 | fveq2d 6195 |
. . . . . . . . . 10
|
| 20 | mulgval.i |
. . . . . . . . . 10
| |
| 21 | 19, 20 | syl6eqr 2674 |
. . . . . . . . 9
|
| 22 | 16 | fveq1d 6193 |
. . . . . . . . 9
|
| 23 | 21, 22 | fveq12d 6197 |
. . . . . . . 8
|
| 24 | 17, 23 | ifeq12d 4106 |
. . . . . . 7
|
| 25 | 10, 24 | csbied 3560 |
. . . . . 6
|
| 26 | 8, 25 | ifeq12d 4106 |
. . . . 5
|
| 27 | 2, 5, 26 | mpt2eq123dv 6717 |
. . . 4
|
| 28 | df-mulg 17541 |
. . . 4
| |
| 29 | zex 11386 |
. . . . 5
| |
| 30 | fvex 6201 |
. . . . . 6
| |
| 31 | 4, 30 | eqeltri 2697 |
. . . . 5
|
| 32 | 29, 31 | mpt2ex 7247 |
. . . 4
|
| 33 | 27, 28, 32 | fvmpt 6282 |
. . 3
|
| 34 | fvprc 6185 |
. . . 4
| |
| 35 | eqid 2622 |
. . . . . . 7
| |
| 36 | fvex 6201 |
. . . . . . . . 9
| |
| 37 | 7, 36 | eqeltri 2697 |
. . . . . . . 8
|
| 38 | fvex 6201 |
. . . . . . . . 9
| |
| 39 | fvex 6201 |
. . . . . . . . 9
| |
| 40 | 38, 39 | ifex 4156 |
. . . . . . . 8
|
| 41 | 37, 40 | ifex 4156 |
. . . . . . 7
|
| 42 | 35, 41 | fnmpt2i 7239 |
. . . . . 6
|
| 43 | fvprc 6185 |
. . . . . . . . . 10
| |
| 44 | 4, 43 | syl5eq 2668 |
. . . . . . . . 9
|
| 45 | 44 | xpeq2d 5139 |
. . . . . . . 8
|
| 46 | xp0 5552 |
. . . . . . . 8
| |
| 47 | 45, 46 | syl6eq 2672 |
. . . . . . 7
|
| 48 | 47 | fneq2d 5982 |
. . . . . 6
|
| 49 | 42, 48 | mpbii 223 |
. . . . 5
|
| 50 | fn0 6011 |
. . . . 5
| |
| 51 | 49, 50 | sylib 208 |
. . . 4
|
| 52 | 34, 51 | eqtr4d 2659 |
. . 3
|
| 53 | 33, 52 | pm2.61i 176 |
. 2
|
| 54 | 1, 53 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-neg 10269 df-z 11378 df-seq 12802 df-mulg 17541 |
| This theorem is referenced by: mulgval 17543 mulgfn 17544 mulgpropd 17584 |
| Copyright terms: Public domain | W3C validator |