Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvsum Structured version   Visualization version   Unicode version

Theorem binomcxplemdvsum 38554
Description: Lemma for binomcxp 38556. The derivative of the generalized sum in binomcxplemnn0 38548. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a  |-  ( ph  ->  A  e.  RR+ )
binomcxp.b  |-  ( ph  ->  B  e.  RR )
binomcxp.lt  |-  ( ph  ->  ( abs `  B
)  <  ( abs `  A ) )
binomcxp.c  |-  ( ph  ->  C  e.  CC )
binomcxplem.f  |-  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) )
binomcxplem.s  |-  S  =  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
binomcxplem.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
binomcxplem.e  |-  E  =  ( b  e.  CC  |->  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) ) )
binomcxplem.d  |-  D  =  ( `' abs " (
0 [,) R ) )
binomcxplem.p  |-  P  =  ( b  e.  D  |-> 
sum_ k  e.  NN0  ( ( S `  b ) `  k
) )
Assertion
Ref Expression
binomcxplemdvsum  |-  ( ph  ->  ( CC  _D  P
)  =  ( b  e.  D  |->  sum_ k  e.  NN  ( ( E `
 b ) `  k ) ) )
Distinct variable groups:    k, b, F    ph, b, k    r,
b, k, F    j,
k, ph    C, j
Allowed substitution hints:    ph( r)    A( j, k, r, b)    B( j, k, r, b)    C( k, r, b)    D( j, k, r, b)    P( j, k, r, b)    R( j, k, r, b)    S( j, k, r, b)    E( j, k, r, b)    F( j)

Proof of Theorem binomcxplemdvsum
Dummy variables  m  n  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4  |-  S  =  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
2 binomcxplem.p . . . . 5  |-  P  =  ( b  e.  D  |-> 
sum_ k  e.  NN0  ( ( S `  b ) `  k
) )
3 binomcxplem.d . . . . . . 7  |-  D  =  ( `' abs " (
0 [,) R ) )
4 nfcv 2764 . . . . . . . 8  |-  F/_ b `' abs
5 nfcv 2764 . . . . . . . . 9  |-  F/_ b
0
6 nfcv 2764 . . . . . . . . 9  |-  F/_ b [,)
7 binomcxplem.r . . . . . . . . . 10  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
8 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ b  +
9 nfmpt1 4747 . . . . . . . . . . . . . . . 16  |-  F/_ b
( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
101, 9nfcxfr 2762 . . . . . . . . . . . . . . 15  |-  F/_ b S
11 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ b
r
1210, 11nffv 6198 . . . . . . . . . . . . . 14  |-  F/_ b
( S `  r
)
135, 8, 12nfseq 12811 . . . . . . . . . . . . 13  |-  F/_ b  seq 0 (  +  , 
( S `  r
) )
1413nfel1 2779 . . . . . . . . . . . 12  |-  F/ b  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>
15 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ b RR
1614, 15nfrab 3123 . . . . . . . . . . 11  |-  F/_ b { r  e.  RR  |  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>  }
17 nfcv 2764 . . . . . . . . . . 11  |-  F/_ b RR*
18 nfcv 2764 . . . . . . . . . . 11  |-  F/_ b  <
1916, 17, 18nfsup 8357 . . . . . . . . . 10  |-  F/_ b sup ( { r  e.  RR  |  seq 0
(  +  ,  ( S `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  )
207, 19nfcxfr 2762 . . . . . . . . 9  |-  F/_ b R
215, 6, 20nfov 6676 . . . . . . . 8  |-  F/_ b
( 0 [,) R
)
224, 21nfima 5474 . . . . . . 7  |-  F/_ b
( `' abs " (
0 [,) R ) )
233, 22nfcxfr 2762 . . . . . 6  |-  F/_ b D
24 nfcv 2764 . . . . . 6  |-  F/_ y D
25 nfcv 2764 . . . . . 6  |-  F/_ y sum_ k  e.  NN0  (
( S `  b
) `  k )
26 nfcv 2764 . . . . . . 7  |-  F/_ b NN0
27 nfcv 2764 . . . . . . . . 9  |-  F/_ b
y
2810, 27nffv 6198 . . . . . . . 8  |-  F/_ b
( S `  y
)
29 nfcv 2764 . . . . . . . 8  |-  F/_ b
m
3028, 29nffv 6198 . . . . . . 7  |-  F/_ b
( ( S `  y ) `  m
)
3126, 30nfsum 14421 . . . . . 6  |-  F/_ b sum_ m  e.  NN0  (
( S `  y
) `  m )
32 simpl 473 . . . . . . . . . 10  |-  ( ( b  =  y  /\  k  e.  NN0 )  -> 
b  =  y )
3332fveq2d 6195 . . . . . . . . 9  |-  ( ( b  =  y  /\  k  e.  NN0 )  -> 
( S `  b
)  =  ( S `
 y ) )
3433fveq1d 6193 . . . . . . . 8  |-  ( ( b  =  y  /\  k  e.  NN0 )  -> 
( ( S `  b ) `  k
)  =  ( ( S `  y ) `
 k ) )
3534sumeq2dv 14433 . . . . . . 7  |-  ( b  =  y  ->  sum_ k  e.  NN0  ( ( S `
 b ) `  k )  =  sum_ k  e.  NN0  ( ( S `  y ) `
 k ) )
36 nfcv 2764 . . . . . . . 8  |-  F/_ m
( ( S `  y ) `  k
)
37 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ k CC
38 nfmpt1 4747 . . . . . . . . . . . 12  |-  F/_ k
( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) )
3937, 38nfmpt 4746 . . . . . . . . . . 11  |-  F/_ k
( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
401, 39nfcxfr 2762 . . . . . . . . . 10  |-  F/_ k S
41 nfcv 2764 . . . . . . . . . 10  |-  F/_ k
y
4240, 41nffv 6198 . . . . . . . . 9  |-  F/_ k
( S `  y
)
43 nfcv 2764 . . . . . . . . 9  |-  F/_ k
m
4442, 43nffv 6198 . . . . . . . 8  |-  F/_ k
( ( S `  y ) `  m
)
45 fveq2 6191 . . . . . . . 8  |-  ( k  =  m  ->  (
( S `  y
) `  k )  =  ( ( S `
 y ) `  m ) )
4636, 44, 45cbvsumi 14427 . . . . . . 7  |-  sum_ k  e.  NN0  ( ( S `
 y ) `  k )  =  sum_ m  e.  NN0  ( ( S `  y ) `  m )
4735, 46syl6eq 2672 . . . . . 6  |-  ( b  =  y  ->  sum_ k  e.  NN0  ( ( S `
 b ) `  k )  =  sum_ m  e.  NN0  ( ( S `  y ) `  m ) )
4823, 24, 25, 31, 47cbvmptf 4748 . . . . 5  |-  ( b  e.  D  |->  sum_ k  e.  NN0  ( ( S `
 b ) `  k ) )  =  ( y  e.  D  |-> 
sum_ m  e.  NN0  ( ( S `  y ) `  m
) )
492, 48eqtri 2644 . . . 4  |-  P  =  ( y  e.  D  |-> 
sum_ m  e.  NN0  ( ( S `  y ) `  m
) )
50 ovexd 6680 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( CC𝑐 j
)  e.  _V )
51 binomcxplem.f . . . . . 6  |-  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) )
5251a1i 11 . . . . 5  |-  ( ph  ->  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) ) )
5351a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) ) )
54 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
j  =  k )
5554oveq2d 6666 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  =  k )  -> 
( CC𝑐 j )  =  ( CC𝑐 k ) )
56 simpr 477 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
57 binomcxp.c . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
5857adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  CC )
5958, 56bcccl 38538 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( CC𝑐 k
)  e.  CC )
6053, 55, 56, 59fvmptd 6288 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( CC𝑐 k ) )
6160, 59eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
6250, 52, 61fmpt2d 6393 . . . 4  |-  ( ph  ->  F : NN0 --> CC )
63 nfcv 2764 . . . . . . 7  |-  F/_ r RR
64 nfcv 2764 . . . . . . 7  |-  F/_ z RR
65 nfv 1843 . . . . . . 7  |-  F/ z  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>
66 nfcv 2764 . . . . . . . . 9  |-  F/_ r
0
67 nfcv 2764 . . . . . . . . 9  |-  F/_ r  +
68 nfcv 2764 . . . . . . . . . . 11  |-  F/_ r
( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
691, 68nfcxfr 2762 . . . . . . . . . 10  |-  F/_ r S
70 nfcv 2764 . . . . . . . . . 10  |-  F/_ r
z
7169, 70nffv 6198 . . . . . . . . 9  |-  F/_ r
( S `  z
)
7266, 67, 71nfseq 12811 . . . . . . . 8  |-  F/_ r  seq 0 (  +  , 
( S `  z
) )
7372nfel1 2779 . . . . . . 7  |-  F/ r  seq 0 (  +  ,  ( S `  z ) )  e. 
dom 
~~>
74 fveq2 6191 . . . . . . . . 9  |-  ( r  =  z  ->  ( S `  r )  =  ( S `  z ) )
7574seqeq3d 12809 . . . . . . . 8  |-  ( r  =  z  ->  seq 0 (  +  , 
( S `  r
) )  =  seq 0 (  +  , 
( S `  z
) ) )
7675eleq1d 2686 . . . . . . 7  |-  ( r  =  z  ->  (  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  <->  seq 0 (  +  , 
( S `  z
) )  e.  dom  ~~>  ) )
7763, 64, 65, 73, 76cbvrab 3198 . . . . . 6  |-  { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  }  =  { z  e.  RR  |  seq 0
(  +  ,  ( S `  z ) )  e.  dom  ~~>  }
7877supeq1i 8353 . . . . 5  |-  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  =  sup ( { z  e.  RR  |  seq 0 (  +  , 
( S `  z
) )  e.  dom  ~~>  } ,  RR* ,  <  )
797, 78eqtri 2644 . . . 4  |-  R  =  sup ( { z  e.  RR  |  seq 0 (  +  , 
( S `  z
) )  e.  dom  ~~>  } ,  RR* ,  <  )
801fveq1i 6192 . . . . . . . . . . . 12  |-  ( S `
 z )  =  ( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z )
81 seqeq3 12806 . . . . . . . . . . . 12  |-  ( ( S `  z )  =  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z )  ->  seq 0 (  +  ,  ( S `  z ) )  =  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) ) )
8280, 81ax-mp 5 . . . . . . . . . . 11  |-  seq 0
(  +  ,  ( S `  z ) )  =  seq 0
(  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) ) `  z ) )
8382eleq1i 2692 . . . . . . . . . 10  |-  (  seq 0 (  +  , 
( S `  z
) )  e.  dom  ~~>  <->  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  )
8483a1i 11 . . . . . . . . 9  |-  ( z  e.  RR  ->  (  seq 0 (  +  , 
( S `  z
) )  e.  dom  ~~>  <->  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  ) )
8584rabbiia 3185 . . . . . . . 8  |-  { z  e.  RR  |  seq 0 (  +  , 
( S `  z
) )  e.  dom  ~~>  }  =  { z  e.  RR  |  seq 0
(  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) ) `  z ) )  e. 
dom 
~~>  }
8685supeq1i 8353 . . . . . . 7  |-  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( S `  z ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  =  sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )
877, 78, 863eqtrri 2649 . . . . . 6  |-  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  =  R
8887eleq1i 2692 . . . . 5  |-  ( sup ( { z  e.  RR  |  seq 0
(  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) ) `  z ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  e.  RR  <->  R  e.  RR )
8987oveq2i 6661 . . . . . 6  |-  ( ( abs `  x )  +  sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  =  ( ( abs `  x )  +  R
)
9089oveq1i 6660 . . . . 5  |-  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 )  =  ( ( ( abs `  x )  +  R
)  /  2 )
91 eqid 2622 . . . . 5  |-  ( ( abs `  x )  +  1 )  =  ( ( abs `  x
)  +  1 )
9288, 90, 91ifbieq12i 4112 . . . 4  |-  if ( sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  x
)  +  1 ) )  =  if ( R  e.  RR , 
( ( ( abs `  x )  +  R
)  /  2 ) ,  ( ( abs `  x )  +  1 ) )
93 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  b  ->  (
w ^ k )  =  ( b ^
k ) )
9493oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( w  =  b  ->  (
( F `  k
)  x.  ( w ^ k ) )  =  ( ( F `
 k )  x.  ( b ^ k
) ) )
9594mpteq2dv 4745 . . . . . . . . . . . . . . . 16  |-  ( w  =  b  ->  (
k  e.  NN0  |->  ( ( F `  k )  x.  ( w ^
k ) ) )  =  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) )
9695cbvmptv 4750 . . . . . . . . . . . . . . 15  |-  ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( w ^
k ) ) ) )  =  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) )
9796fveq1i 6192 . . . . . . . . . . . . . 14  |-  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( w ^
k ) ) ) ) `  z )  =  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z )
98 seqeq3 12806 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
w ^ k ) ) ) ) `  z )  =  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) ) `  z )  ->  seq 0 (  +  , 
( ( w  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( w ^ k
) ) ) ) `
 z ) )  =  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) ) )
9997, 98ax-mp 5 . . . . . . . . . . . . 13  |-  seq 0
(  +  ,  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
w ^ k ) ) ) ) `  z ) )  =  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )
10099eleq1i 2692 . . . . . . . . . . . 12  |-  (  seq 0 (  +  , 
( ( w  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( w ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  <->  seq 0
(  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) ) `  z ) )  e. 
dom 
~~>  )
101100a1i 11 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  (  seq 0 (  +  , 
( ( w  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( w ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  <->  seq 0
(  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) ) `  z ) )  e. 
dom 
~~>  ) )
102101rabbiia 3185 . . . . . . . . . 10  |-  { z  e.  RR  |  seq 0 (  +  , 
( ( w  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( w ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  }  =  { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  }
103102supeq1i 8353 . . . . . . . . 9  |-  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( w ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  =  sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )
104103eleq1i 2692 . . . . . . . 8  |-  ( sup ( { z  e.  RR  |  seq 0
(  +  ,  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
w ^ k ) ) ) ) `  z ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  e.  RR  <->  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR )
105103oveq2i 6661 . . . . . . . . 9  |-  ( ( abs `  x )  +  sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( w  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( w ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  =  ( ( abs `  x )  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )
106105oveq1i 6660 . . . . . . . 8  |-  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( w ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 )  =  ( ( ( abs `  x )  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 )
107104, 106, 91ifbieq12i 4112 . . . . . . 7  |-  if ( sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( w  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( w ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( w ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  x
)  +  1 ) )  =  if ( sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  x
)  +  1 ) )
108107oveq2i 6661 . . . . . 6  |-  ( ( abs `  x )  +  if ( sup ( { z  e.  RR  |  seq 0
(  +  ,  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
w ^ k ) ) ) ) `  z ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( w ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  x
)  +  1 ) ) )  =  ( ( abs `  x
)  +  if ( sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  x
)  +  1 ) ) )
109108oveq1i 6660 . . . . 5  |-  ( ( ( abs `  x
)  +  if ( sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( w  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( w ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( w ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  x
)  +  1 ) ) )  /  2
)  =  ( ( ( abs `  x
)  +  if ( sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  x
)  +  1 ) ) )  /  2
)
110109oveq2i 6661 . . . 4  |-  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  x )  +  if ( sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( w  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( w ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( w  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( w ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  x
)  +  1 ) ) )  /  2
) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  x )  +  if ( sup ( { z  e.  RR  |  seq 0 (  +  , 
( ( b  e.  CC  |->  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( b ^ k
) ) ) ) `
 z ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  x
)  +  sup ( { z  e.  RR  |  seq 0 (  +  ,  ( ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) ) `  z ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  x
)  +  1 ) ) )  /  2
) )
1111, 49, 62, 79, 3, 92, 110pserdv2 24184 . . 3  |-  ( ph  ->  ( CC  _D  P
)  =  ( y  e.  D  |->  sum_ n  e.  NN  ( ( n  x.  ( F `  n ) )  x.  ( y ^ (
n  -  1 ) ) ) ) )
112 cnvimass 5485 . . . . . . . 8  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
1133, 112eqsstri 3635 . . . . . . 7  |-  D  C_  dom  abs
114 absf 14077 . . . . . . . 8  |-  abs : CC
--> RR
115114fdmi 6052 . . . . . . 7  |-  dom  abs  =  CC
116113, 115sseqtri 3637 . . . . . 6  |-  D  C_  CC
117116sseli 3599 . . . . 5  |-  ( y  e.  D  ->  y  e.  CC )
118 binomcxplem.e . . . . . . . . . 10  |-  E  =  ( b  e.  CC  |->  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) ) )
119118a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  CC )  ->  E  =  ( b  e.  CC  |->  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) ) ) )
120 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  CC )  /\  b  =  y
)  /\  k  e.  NN )  ->  b  =  y )
121120oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  CC )  /\  b  =  y
)  /\  k  e.  NN )  ->  ( b ^ ( k  - 
1 ) )  =  ( y ^ (
k  -  1 ) ) )
122121oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  CC )  /\  b  =  y
)  /\  k  e.  NN )  ->  ( ( k  x.  ( F `
 k ) )  x.  ( b ^
( k  -  1 ) ) )  =  ( ( k  x.  ( F `  k
) )  x.  (
y ^ ( k  -  1 ) ) ) )
123122mpteq2dva 4744 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  CC )  /\  b  =  y )  -> 
( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) )  =  ( k  e.  NN  |->  ( ( k  x.  ( F `  k )
)  x.  ( y ^ ( k  - 
1 ) ) ) ) )
124 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  CC )  ->  y  e.  CC )
125 nnex 11026 . . . . . . . . . . 11  |-  NN  e.  _V
126125mptex 6486 . . . . . . . . . 10  |-  ( k  e.  NN  |->  ( ( k  x.  ( F `
 k ) )  x.  ( y ^
( k  -  1 ) ) ) )  e.  _V
127126a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  CC )  ->  ( k  e.  NN  |->  ( ( k  x.  ( F `
 k ) )  x.  ( y ^
( k  -  1 ) ) ) )  e.  _V )
128119, 123, 124, 127fvmptd 6288 . . . . . . . 8  |-  ( (
ph  /\  y  e.  CC )  ->  ( E `
 y )  =  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
y ^ ( k  -  1 ) ) ) ) )
129128adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  ->  ( E `  y )  =  ( k  e.  NN  |->  ( ( k  x.  ( F `  k ) )  x.  ( y ^ (
k  -  1 ) ) ) ) )
130 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  /\  k  =  n )  ->  k  =  n )
131130fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  /\  k  =  n )  ->  ( F `  k )  =  ( F `  n ) )
132130, 131oveq12d 6668 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  /\  k  =  n )  ->  ( k  x.  ( F `  k
) )  =  ( n  x.  ( F `
 n ) ) )
133130oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  /\  k  =  n )  ->  ( k  -  1 )  =  ( n  -  1 ) )
134133oveq2d 6666 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  /\  k  =  n )  ->  ( y ^ ( k  - 
1 ) )  =  ( y ^ (
n  -  1 ) ) )
135132, 134oveq12d 6668 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  /\  k  =  n )  ->  ( (
k  x.  ( F `
 k ) )  x.  ( y ^
( k  -  1 ) ) )  =  ( ( n  x.  ( F `  n
) )  x.  (
y ^ ( n  -  1 ) ) ) )
136 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  ->  n  e.  NN )
137 ovexd 6680 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  ->  (
( n  x.  ( F `  n )
)  x.  ( y ^ ( n  - 
1 ) ) )  e.  _V )
138129, 135, 136, 137fvmptd 6288 . . . . . 6  |-  ( ( ( ph  /\  y  e.  CC )  /\  n  e.  NN )  ->  (
( E `  y
) `  n )  =  ( ( n  x.  ( F `  n ) )  x.  ( y ^ (
n  -  1 ) ) ) )
139138sumeq2dv 14433 . . . . 5  |-  ( (
ph  /\  y  e.  CC )  ->  sum_ n  e.  NN  ( ( E `
 y ) `  n )  =  sum_ n  e.  NN  ( ( n  x.  ( F `
 n ) )  x.  ( y ^
( n  -  1 ) ) ) )
140117, 139sylan2 491 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  sum_ n  e.  NN  ( ( E `
 y ) `  n )  =  sum_ n  e.  NN  ( ( n  x.  ( F `
 n ) )  x.  ( y ^
( n  -  1 ) ) ) )
141140mpteq2dva 4744 . . 3  |-  ( ph  ->  ( y  e.  D  |-> 
sum_ n  e.  NN  ( ( E `  y ) `  n
) )  =  ( y  e.  D  |->  sum_
n  e.  NN  (
( n  x.  ( F `  n )
)  x.  ( y ^ ( n  - 
1 ) ) ) ) )
142111, 141eqtr4d 2659 . 2  |-  ( ph  ->  ( CC  _D  P
)  =  ( y  e.  D  |->  sum_ n  e.  NN  ( ( E `
 y ) `  n ) ) )
143 nfcv 2764 . . . 4  |-  F/_ b NN
144 nfmpt1 4747 . . . . . . 7  |-  F/_ b
( b  e.  CC  |->  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) ) )
145118, 144nfcxfr 2762 . . . . . 6  |-  F/_ b E
146145, 27nffv 6198 . . . . 5  |-  F/_ b
( E `  y
)
147 nfcv 2764 . . . . 5  |-  F/_ b
n
148146, 147nffv 6198 . . . 4  |-  F/_ b
( ( E `  y ) `  n
)
149143, 148nfsum 14421 . . 3  |-  F/_ b sum_ n  e.  NN  (
( E `  y
) `  n )
150 nfcv 2764 . . 3  |-  F/_ y sum_ k  e.  NN  (
( E `  b
) `  k )
151 simpl 473 . . . . . . 7  |-  ( ( y  =  b  /\  n  e.  NN )  ->  y  =  b )
152151fveq2d 6195 . . . . . 6  |-  ( ( y  =  b  /\  n  e.  NN )  ->  ( E `  y
)  =  ( E `
 b ) )
153152fveq1d 6193 . . . . 5  |-  ( ( y  =  b  /\  n  e.  NN )  ->  ( ( E `  y ) `  n
)  =  ( ( E `  b ) `
 n ) )
154153sumeq2dv 14433 . . . 4  |-  ( y  =  b  ->  sum_ n  e.  NN  ( ( E `
 y ) `  n )  =  sum_ n  e.  NN  ( ( E `  b ) `
 n ) )
155 nfmpt1 4747 . . . . . . . . 9  |-  F/_ k
( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) )
15637, 155nfmpt 4746 . . . . . . . 8  |-  F/_ k
( b  e.  CC  |->  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) ) )
157118, 156nfcxfr 2762 . . . . . . 7  |-  F/_ k E
158 nfcv 2764 . . . . . . 7  |-  F/_ k
b
159157, 158nffv 6198 . . . . . 6  |-  F/_ k
( E `  b
)
160 nfcv 2764 . . . . . 6  |-  F/_ k
n
161159, 160nffv 6198 . . . . 5  |-  F/_ k
( ( E `  b ) `  n
)
162 nfcv 2764 . . . . 5  |-  F/_ n
( ( E `  b ) `  k
)
163 fveq2 6191 . . . . 5  |-  ( n  =  k  ->  (
( E `  b
) `  n )  =  ( ( E `
 b ) `  k ) )
164161, 162, 163cbvsumi 14427 . . . 4  |-  sum_ n  e.  NN  ( ( E `
 b ) `  n )  =  sum_ k  e.  NN  (
( E `  b
) `  k )
165154, 164syl6eq 2672 . . 3  |-  ( y  =  b  ->  sum_ n  e.  NN  ( ( E `
 y ) `  n )  =  sum_ k  e.  NN  (
( E `  b
) `  k )
)
16624, 23, 149, 150, 165cbvmptf 4748 . 2  |-  ( y  e.  D  |->  sum_ n  e.  NN  ( ( E `
 y ) `  n ) )  =  ( b  e.  D  |-> 
sum_ k  e.  NN  ( ( E `  b ) `  k
) )
167142, 166syl6eq 2672 1  |-  ( ph  ->  ( CC  _D  P
)  =  ( b  e.  D  |->  sum_ k  e.  NN  ( ( E `
 b ) `  k ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   "cima 5117    o. ccom 5118   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   RR+crp 11832   [,)cico 12177    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   sum_csu 14416   ballcbl 19733    _D cdv 23627  C𝑐cbcc 38535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-fallfac 14738  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-bcc 38536
This theorem is referenced by:  binomcxplemnotnn0  38555
  Copyright terms: Public domain W3C validator