MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcn Structured version   Visualization version   Unicode version

Theorem fsumcn 22673
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcn.3  |-  K  =  ( TopOpen ` fld )
fsumcn.4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
fsumcn.5  |-  ( ph  ->  A  e.  Fin )
fsumcn.6  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
Assertion
Ref Expression
fsumcn  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, k, A    k, J, x    ph, k, x    k, K, x    k, X, x
Allowed substitution hints:    B( x, k)

Proof of Theorem fsumcn
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . 2  |-  A  C_  A
2 fsumcn.5 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3626 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 sumeq1 14419 . . . . . . . 8  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
54mpteq2dv 4745 . . . . . . 7  |-  ( w  =  (/)  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  (/)  B ) )
65eleq1d 2686 . . . . . 6  |-  ( w  =  (/)  ->  ( ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K )  <->  ( x  e.  X  |->  sum_ k  e.  (/)  B )  e.  ( J  Cn  K
) ) )
73, 6imbi12d 334 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) )  <-> 
( (/)  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) ) ) )
87imbi2d 330 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) ) )  <->  ( ph  ->  ( (/)  C_  A  -> 
( x  e.  X  |-> 
sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) ) ) ) )
9 sseq1 3626 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  A  <->  y  C_  A ) )
10 sumeq1 14419 . . . . . . . 8  |-  ( w  =  y  ->  sum_ k  e.  w  B  =  sum_ k  e.  y  B )
1110mpteq2dv 4745 . . . . . . 7  |-  ( w  =  y  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  y  B )
)
1211eleq1d 2686 . . . . . 6  |-  ( w  =  y  ->  (
( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )
139, 12imbi12d 334 . . . . 5  |-  ( w  =  y  ->  (
( w  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K ) )  <->  ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) ) )
1413imbi2d 330 . . . 4  |-  ( w  =  y  ->  (
( ph  ->  ( w 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) ) )  <->  ( ph  ->  ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) ) ) )
15 sseq1 3626 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
16 sumeq1 14419 . . . . . . . 8  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
1716mpteq2dv 4745 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B ) )
1817eleq1d 2686 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K
)  <->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K ) ) )
1915, 18imbi12d 334 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) )  <-> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) )
2019imbi2d 330 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ph  ->  ( w  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K ) ) )  <->  ( ph  ->  ( ( y  u. 
{ z } ) 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) ) )
21 sseq1 3626 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
22 sumeq1 14419 . . . . . . . 8  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
2322mpteq2dv 4745 . . . . . . 7  |-  ( w  =  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  A  B )
)
2423eleq1d 2686 . . . . . 6  |-  ( w  =  A  ->  (
( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) )
2521, 24imbi12d 334 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K ) )  <->  ( A  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) ) )
2625imbi2d 330 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) ) )  <->  ( ph  ->  ( A  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  A  B
)  e.  ( J  Cn  K ) ) ) ) )
27 sum0 14452 . . . . . . 7  |-  sum_ k  e.  (/)  B  =  0
2827mpteq2i 4741 . . . . . 6  |-  ( x  e.  X  |->  sum_ k  e.  (/)  B )  =  ( x  e.  X  |->  0 )
29 fsumcn.4 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
30 fsumcn.3 . . . . . . . . 9  |-  K  =  ( TopOpen ` fld )
3130cnfldtopon 22586 . . . . . . . 8  |-  K  e.  (TopOn `  CC )
3231a1i 11 . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  CC ) )
33 0cnd 10033 . . . . . . 7  |-  ( ph  ->  0  e.  CC )
3429, 32, 33cnmptc 21465 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  0 )  e.  ( J  Cn  K ) )
3528, 34syl5eqel 2705 . . . . 5  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) )
3635a1d 25 . . . 4  |-  ( ph  ->  ( (/)  C_  A  -> 
( x  e.  X  |-> 
sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) ) )
37 ssun1 3776 . . . . . . . . . 10  |-  y  C_  ( y  u.  {
z } )
38 sstr 3611 . . . . . . . . . 10  |-  ( ( y  C_  ( y  u.  { z } )  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
y  C_  A )
3937, 38mpan 706 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  A  ->  y  C_  A )
4039imim1i 63 . . . . . . . 8  |-  ( ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( ( y  u.  { z } )  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )
41 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  -.  z  e.  y
)
42 disjsn 4246 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
4341, 42sylibr 224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( y  i^i  {
z } )  =  (/) )
44 eqidd 2623 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( y  u.  {
z } )  =  ( y  u.  {
z } ) )
452ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  A  e.  Fin )
46 simprl 794 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( y  u.  {
z } )  C_  A )
47 ssfi 8180 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A )  ->  (
y  u.  { z } )  e.  Fin )
4845, 46, 47syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( y  u.  {
z } )  e. 
Fin )
49 simplll 798 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( (
y  u.  { z } )  C_  A  /\  x  e.  X
) )  /\  k  e.  ( y  u.  {
z } ) )  ->  ph )
5046sselda 3603 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( (
y  u.  { z } )  C_  A  /\  x  e.  X
) )  /\  k  e.  ( y  u.  {
z } ) )  ->  k  e.  A
)
51 simplrr 801 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( (
y  u.  { z } )  C_  A  /\  x  e.  X
) )  /\  k  e.  ( y  u.  {
z } ) )  ->  x  e.  X
)
5229adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  A )  ->  J  e.  (TopOn `  X )
)
5331a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  A )  ->  K  e.  (TopOn `  CC )
)
54 fsumcn.6 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
55 cnf2 21053 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  CC )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )  ->  ( x  e.  X  |->  B ) : X --> CC )
5652, 53, 54, 55syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B ) : X --> CC )
57 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
5857fmpt 6381 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. x  e.  X  B  e.  CC  <->  ( x  e.  X  |->  B ) : X --> CC )
5956, 58sylibr 224 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  A )  ->  A. x  e.  X  B  e.  CC )
60 rsp 2929 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. x  e.  X  B  e.  CC  ->  ( x  e.  X  ->  B  e.  CC ) )
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  ->  B  e.  CC )
)
6261imp 445 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  A )  /\  x  e.  X )  ->  B  e.  CC )
6349, 50, 51, 62syl21anc 1325 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( (
y  u.  { z } )  C_  A  /\  x  e.  X
) )  /\  k  e.  ( y  u.  {
z } ) )  ->  B  e.  CC )
6443, 44, 48, 63fsumsplit 14471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  sum_ k  e.  ( y  u.  { z } ) B  =  (
sum_ k  e.  y  B  +  sum_ k  e.  { z } B
) )
65 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( y  u.  {
z } )  C_  A )  ->  (
y  u.  { z } )  C_  A
)
6665unssbd 3791 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( y  u.  {
z } )  C_  A )  ->  { z }  C_  A )
67 vex 3203 . . . . . . . . . . . . . . . . . . . . 21  |-  z  e. 
_V
6867snss 4316 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  A  <->  { z }  C_  A )
6966, 68sylibr 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( y  u.  {
z } )  C_  A )  ->  z  e.  A )
7069adantrr 753 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
z  e.  A )
7161impancom 456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
k  e.  A  ->  B  e.  CC )
)
7271ralrimiv 2965 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  X )  ->  A. k  e.  A  B  e.  CC )
7372ad2ant2rl 785 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  A. k  e.  A  B  e.  CC )
74 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ k [_ z  /  k ]_ B
7574nfel1 2779 . . . . . . . . . . . . . . . . . . . 20  |-  F/ k
[_ z  /  k ]_ B  e.  CC
76 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
7776eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  z  ->  ( B  e.  CC  <->  [_ z  / 
k ]_ B  e.  CC ) )
7875, 77rspc 3303 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ z  /  k ]_ B  e.  CC )
)
7970, 73, 78sylc 65 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  [_ z  /  k ]_ B  e.  CC )
80 sumsns 14479 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  A  /\  [_ z  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
z } B  = 
[_ z  /  k ]_ B )
8170, 79, 80syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  sum_ k  e.  { z } B  =  [_ z  /  k ]_ B
)
8281oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( sum_ k  e.  y  B  +  sum_ k  e.  { z } B
)  =  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )
8364, 82eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  sum_ k  e.  ( y  u.  { z } ) B  =  (
sum_ k  e.  y  B  +  [_ z  /  k ]_ B
) )
8483anassrs 680 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( y  u.  { z } ) 
C_  A )  /\  x  e.  X )  -> 
sum_ k  e.  ( y  u.  { z } ) B  =  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
) )
8584mpteq2dva 4744 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( y  u.  {
z } )  C_  A )  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  =  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
) ) )
8685adantrr 753 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  =  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) ) )
87 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ w
( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
)
88 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ x
y
89 nfcsb1v 3549 . . . . . . . . . . . . . . 15  |-  F/_ x [_ w  /  x ]_ B
9088, 89nfsum 14421 . . . . . . . . . . . . . 14  |-  F/_ x sum_ k  e.  y  [_ w  /  x ]_ B
91 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x  +
92 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ x
z
9392, 89nfcsb 3551 . . . . . . . . . . . . . 14  |-  F/_ x [_ z  /  k ]_ [_ w  /  x ]_ B
9490, 91, 93nfov 6676 . . . . . . . . . . . . 13  |-  F/_ x
( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B )
95 csbeq1a 3542 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
9695sumeq2sdv 14435 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  sum_ k  e.  y  B  =  sum_ k  e.  y  [_ w  /  x ]_ B
)
9795csbeq2dv 3992 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  [_ z  /  k ]_ B  =  [_ z  /  k ]_ [_ w  /  x ]_ B )
9896, 97oveq12d 6668 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  ( sum_ k  e.  y  B  +  [_ z  / 
k ]_ B )  =  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )
9987, 94, 98cbvmpt 4749 . . . . . . . . . . . 12  |-  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )  =  ( w  e.  X  |->  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )
10086, 99syl6eq 2672 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  =  ( w  e.  X  |->  ( sum_ k  e.  y  [_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) ) )
10129ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  J  e.  (TopOn `  X ) )
102 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ w sum_ k  e.  y  B
103102, 90, 96cbvmpt 4749 . . . . . . . . . . . . 13  |-  ( x  e.  X  |->  sum_ k  e.  y  B )  =  ( w  e.  X  |->  sum_ k  e.  y 
[_ w  /  x ]_ B )
104 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )
105103, 104syl5eqelr 2706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( w  e.  X  |->  sum_ k  e.  y  [_ w  /  x ]_ B )  e.  ( J  Cn  K
) )
106 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ w [_ z  /  k ]_ B
107106, 93, 97cbvmpt 4749 . . . . . . . . . . . . 13  |-  ( x  e.  X  |->  [_ z  /  k ]_ B
)  =  ( w  e.  X  |->  [_ z  /  k ]_ [_ w  /  x ]_ B )
10869adantrr 753 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  z  e.  A )
10954ralrimiva 2966 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
110109ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
111 nfcv 2764 . . . . . . . . . . . . . . . . 17  |-  F/_ k X
112111, 74nfmpt 4746 . . . . . . . . . . . . . . . 16  |-  F/_ k
( x  e.  X  |-> 
[_ z  /  k ]_ B )
113112nfel1 2779 . . . . . . . . . . . . . . 15  |-  F/ k ( x  e.  X  |-> 
[_ z  /  k ]_ B )  e.  ( J  Cn  K )
11476mpteq2dv 4745 . . . . . . . . . . . . . . . 16  |-  ( k  =  z  ->  (
x  e.  X  |->  B )  =  ( x  e.  X  |->  [_ z  /  k ]_ B
) )
115114eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  (
( x  e.  X  |->  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
[_ z  /  k ]_ B )  e.  ( J  Cn  K ) ) )
116113, 115rspc 3303 . . . . . . . . . . . . . 14  |-  ( z  e.  A  ->  ( A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K )  ->  ( x  e.  X  |->  [_ z  /  k ]_ B )  e.  ( J  Cn  K ) ) )
117108, 110, 116sylc 65 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  [_ z  /  k ]_ B
)  e.  ( J  Cn  K ) )
118107, 117syl5eqelr 2706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( w  e.  X  |->  [_ z  /  k ]_ [_ w  /  x ]_ B )  e.  ( J  Cn  K ) )
11930addcn 22668 . . . . . . . . . . . . 13  |-  +  e.  ( ( K  tX  K )  Cn  K
)
120119a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  +  e.  ( ( K  tX  K )  Cn  K
) )
121101, 105, 118, 120cnmpt12f 21469 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( w  e.  X  |->  ( sum_ k  e.  y  [_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )  e.  ( J  Cn  K
) )
122100, 121eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  e.  ( J  Cn  K ) )
123122exp32 631 . . . . . . . . 9  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  u.  {
z } )  C_  A  ->  ( ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
)  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  e.  ( J  Cn  K ) ) ) )
124123a2d 29 . . . . . . . 8  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( ( y  u. 
{ z } ) 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( ( y  u.  { z } )  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) )
12540, 124syl5 34 . . . . . . 7  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( (
y  u.  { z } )  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K ) ) ) )
126125expcom 451 . . . . . 6  |-  ( -.  z  e.  y  -> 
( ph  ->  ( ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( ( y  u.  { z } )  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) ) )
127126adantl 482 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ph  ->  ( ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( (
y  u.  { z } )  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K ) ) ) ) )
128127a2d 29 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( ph  ->  ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( ph  ->  ( ( y  u.  { z } )  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) ) )
1298, 14, 20, 26, 36, 128findcard2s 8201 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) ) )
1302, 129mpcom 38 . 2  |-  ( ph  ->  ( A  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) )
1311, 130mpi 20 1  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936    + caddc 9939   sum_csu 14416   TopOpenctopn 16082  ℂfldccnfld 19746  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  fsum2cn  22674  lebnumlem2  22761  plycn  24017  psercn2  24177  knoppcnlem11  32493  fsumcnf  39180
  Copyright terms: Public domain W3C validator