| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nneob | Structured version Visualization version Unicode version | ||
| Description: A natural number is even iff its successor is odd. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| nneob |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6658 |
. . . . 5
| |
| 2 | 1 | eqeq2d 2632 |
. . . 4
|
| 3 | 2 | cbvrexv 3172 |
. . 3
|
| 4 | nnneo 7731 |
. . . . . . 7
| |
| 5 | 4 | 3com23 1271 |
. . . . . 6
|
| 6 | 5 | 3expa 1265 |
. . . . 5
|
| 7 | 6 | nrexdv 3001 |
. . . 4
|
| 8 | 7 | rexlimiva 3028 |
. . 3
|
| 9 | 3, 8 | sylbi 207 |
. 2
|
| 10 | suceq 5790 |
. . . . . . 7
| |
| 11 | 10 | eqeq1d 2624 |
. . . . . 6
|
| 12 | 11 | rexbidv 3052 |
. . . . 5
|
| 13 | 12 | notbid 308 |
. . . 4
|
| 14 | eqeq1 2626 |
. . . . 5
| |
| 15 | 14 | rexbidv 3052 |
. . . 4
|
| 16 | 13, 15 | imbi12d 334 |
. . 3
|
| 17 | suceq 5790 |
. . . . . . 7
| |
| 18 | 17 | eqeq1d 2624 |
. . . . . 6
|
| 19 | 18 | rexbidv 3052 |
. . . . 5
|
| 20 | 19 | notbid 308 |
. . . 4
|
| 21 | eqeq1 2626 |
. . . . 5
| |
| 22 | 21 | rexbidv 3052 |
. . . 4
|
| 23 | 20, 22 | imbi12d 334 |
. . 3
|
| 24 | suceq 5790 |
. . . . . . 7
| |
| 25 | 24 | eqeq1d 2624 |
. . . . . 6
|
| 26 | 25 | rexbidv 3052 |
. . . . 5
|
| 27 | 26 | notbid 308 |
. . . 4
|
| 28 | eqeq1 2626 |
. . . . 5
| |
| 29 | 28 | rexbidv 3052 |
. . . 4
|
| 30 | 27, 29 | imbi12d 334 |
. . 3
|
| 31 | suceq 5790 |
. . . . . . 7
| |
| 32 | 31 | eqeq1d 2624 |
. . . . . 6
|
| 33 | 32 | rexbidv 3052 |
. . . . 5
|
| 34 | 33 | notbid 308 |
. . . 4
|
| 35 | eqeq1 2626 |
. . . . 5
| |
| 36 | 35 | rexbidv 3052 |
. . . 4
|
| 37 | 34, 36 | imbi12d 334 |
. . 3
|
| 38 | peano1 7085 |
. . . . 5
| |
| 39 | eqid 2622 |
. . . . 5
| |
| 40 | oveq2 6658 |
. . . . . . . 8
| |
| 41 | om0x 7599 |
. . . . . . . 8
| |
| 42 | 40, 41 | syl6eq 2672 |
. . . . . . 7
|
| 43 | 42 | eqeq2d 2632 |
. . . . . 6
|
| 44 | 43 | rspcev 3309 |
. . . . 5
|
| 45 | 38, 39, 44 | mp2an 708 |
. . . 4
|
| 46 | 45 | a1i 11 |
. . 3
|
| 47 | 1 | eqeq2d 2632 |
. . . . . . 7
|
| 48 | 47 | cbvrexv 3172 |
. . . . . 6
|
| 49 | peano2 7086 |
. . . . . . . . . 10
| |
| 50 | 2onn 7720 |
. . . . . . . . . . . 12
| |
| 51 | nnmsuc 7687 |
. . . . . . . . . . . 12
| |
| 52 | 50, 51 | mpan 706 |
. . . . . . . . . . 11
|
| 53 | df-2o 7561 |
. . . . . . . . . . . . 13
| |
| 54 | 53 | oveq2i 6661 |
. . . . . . . . . . . 12
|
| 55 | nnmcl 7692 |
. . . . . . . . . . . . . 14
| |
| 56 | 50, 55 | mpan 706 |
. . . . . . . . . . . . 13
|
| 57 | 1onn 7719 |
. . . . . . . . . . . . 13
| |
| 58 | nnasuc 7686 |
. . . . . . . . . . . . 13
| |
| 59 | 56, 57, 58 | sylancl 694 |
. . . . . . . . . . . 12
|
| 60 | 54, 59 | syl5req 2669 |
. . . . . . . . . . 11
|
| 61 | nnon 7071 |
. . . . . . . . . . . 12
| |
| 62 | oa1suc 7611 |
. . . . . . . . . . . 12
| |
| 63 | suceq 5790 |
. . . . . . . . . . . 12
| |
| 64 | 56, 61, 62, 63 | 4syl 19 |
. . . . . . . . . . 11
|
| 65 | 52, 60, 64 | 3eqtr2rd 2663 |
. . . . . . . . . 10
|
| 66 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 67 | 66 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 68 | 67 | rspcev 3309 |
. . . . . . . . . 10
|
| 69 | 49, 65, 68 | syl2anc 693 |
. . . . . . . . 9
|
| 70 | suceq 5790 |
. . . . . . . . . . . 12
| |
| 71 | suceq 5790 |
. . . . . . . . . . . 12
| |
| 72 | 70, 71 | syl 17 |
. . . . . . . . . . 11
|
| 73 | 72 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 74 | 73 | rexbidv 3052 |
. . . . . . . . 9
|
| 75 | 69, 74 | syl5ibrcom 237 |
. . . . . . . 8
|
| 76 | 75 | rexlimiv 3027 |
. . . . . . 7
|
| 77 | 76 | a1i 11 |
. . . . . 6
|
| 78 | 48, 77 | syl5bi 232 |
. . . . 5
|
| 79 | 78 | con3d 148 |
. . . 4
|
| 80 | con1 143 |
. . . 4
| |
| 81 | 79, 80 | syl9 77 |
. . 3
|
| 82 | 16, 23, 30, 37, 46, 81 | finds 7092 |
. 2
|
| 83 | 9, 82 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 |
| This theorem is referenced by: fin1a2lem5 9226 |
| Copyright terms: Public domain | W3C validator |