MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmmetd Structured version   Visualization version   Unicode version

Theorem nrmmetd 22379
Description: Show that a group norm generates a metric. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nrmmetd.x  |-  X  =  ( Base `  G
)
nrmmetd.m  |-  .-  =  ( -g `  G )
nrmmetd.z  |-  .0.  =  ( 0g `  G )
nrmmetd.g  |-  ( ph  ->  G  e.  Grp )
nrmmetd.f  |-  ( ph  ->  F : X --> RR )
nrmmetd.1  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
)  =  0  <->  x  =  .0.  ) )
nrmmetd.2  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x  .-  y )
)  <_  ( ( F `  x )  +  ( F `  y ) ) )
Assertion
Ref Expression
nrmmetd  |-  ( ph  ->  ( F  o.  .-  )  e.  ( Met `  X ) )
Distinct variable groups:    x, y,  .-    x,  .0. , y    x, F, y    ph, x, y    x, X, y
Allowed substitution hints:    G( x, y)

Proof of Theorem nrmmetd
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmmetd.f . . 3  |-  ( ph  ->  F : X --> RR )
2 nrmmetd.g . . . 4  |-  ( ph  ->  G  e.  Grp )
3 nrmmetd.x . . . . 5  |-  X  =  ( Base `  G
)
4 nrmmetd.m . . . . 5  |-  .-  =  ( -g `  G )
53, 4grpsubf 17494 . . . 4  |-  ( G  e.  Grp  ->  .-  :
( X  X.  X
) --> X )
62, 5syl 17 . . 3  |-  ( ph  ->  .-  : ( X  X.  X ) --> X )
7 fco 6058 . . 3  |-  ( ( F : X --> RR  /\  .-  : ( X  X.  X ) --> X )  ->  ( F  o.  .-  ) : ( X  X.  X ) --> RR )
81, 6, 7syl2anc 693 . 2  |-  ( ph  ->  ( F  o.  .-  ) : ( X  X.  X ) --> RR )
9 opelxpi 5148 . . . . . . . 8  |-  ( ( a  e.  X  /\  b  e.  X )  -> 
<. a ,  b >.  e.  ( X  X.  X
) )
10 fvco3 6275 . . . . . . . 8  |-  ( ( 
.-  : ( X  X.  X ) --> X  /\  <. a ,  b
>.  e.  ( X  X.  X ) )  -> 
( ( F  o.  .-  ) `  <. a ,  b >. )  =  ( F `  (  .-  `  <. a ,  b >. )
) )
116, 9, 10syl2an 494 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( F  o.  .-  ) `  <. a ,  b >. )  =  ( F `  (  .-  `  <. a ,  b >. )
) )
12 df-ov 6653 . . . . . . 7  |-  ( a ( F  o.  .-  ) b )  =  ( ( F  o.  .-  ) `  <. a ,  b >. )
13 df-ov 6653 . . . . . . . 8  |-  ( a 
.-  b )  =  (  .-  `  <. a ,  b >. )
1413fveq2i 6194 . . . . . . 7  |-  ( F `
 ( a  .-  b ) )  =  ( F `  (  .-  `  <. a ,  b
>. ) )
1511, 12, 143eqtr4g 2681 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a ( F  o.  .-  ) b
)  =  ( F `
 ( a  .-  b ) ) )
1615eqeq1d 2624 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a ( F  o.  .-  )
b )  =  0  <-> 
( F `  (
a  .-  b )
)  =  0 ) )
173, 4grpsubcl 17495 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  a  e.  X  /\  b  e.  X )  ->  ( a  .-  b
)  e.  X )
18173expb 1266 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( a  e.  X  /\  b  e.  X
) )  ->  (
a  .-  b )  e.  X )
192, 18sylan 488 . . . . . 6  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( a  .-  b
)  e.  X )
20 nrmmetd.1 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
)  =  0  <->  x  =  .0.  ) )
2120ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  ( ( F `  x )  =  0  <-> 
x  =  .0.  )
)
22 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  ( a  .-  b )  ->  ( F `  x )  =  ( F `  ( a  .-  b
) ) )
2322eqeq1d 2624 . . . . . . . . 9  |-  ( x  =  ( a  .-  b )  ->  (
( F `  x
)  =  0  <->  ( F `  ( a  .-  b ) )  =  0 ) )
24 eqeq1 2626 . . . . . . . . 9  |-  ( x  =  ( a  .-  b )  ->  (
x  =  .0.  <->  ( a  .-  b )  =  .0.  ) )
2523, 24bibi12d 335 . . . . . . . 8  |-  ( x  =  ( a  .-  b )  ->  (
( ( F `  x )  =  0  <-> 
x  =  .0.  )  <->  ( ( F `  (
a  .-  b )
)  =  0  <->  (
a  .-  b )  =  .0.  ) ) )
2625rspccva 3308 . . . . . . 7  |-  ( ( A. x  e.  X  ( ( F `  x )  =  0  <-> 
x  =  .0.  )  /\  ( a  .-  b
)  e.  X )  ->  ( ( F `
 ( a  .-  b ) )  =  0  <->  ( a  .-  b )  =  .0.  ) )
2721, 26sylan 488 . . . . . 6  |-  ( (
ph  /\  ( a  .-  b )  e.  X
)  ->  ( ( F `  ( a  .-  b ) )  =  0  <->  ( a  .-  b )  =  .0.  ) )
2819, 27syldan 487 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( F `  ( a  .-  b
) )  =  0  <-> 
( a  .-  b
)  =  .0.  )
)
29 nrmmetd.z . . . . . . . 8  |-  .0.  =  ( 0g `  G )
303, 29, 4grpsubeq0 17501 . . . . . . 7  |-  ( ( G  e.  Grp  /\  a  e.  X  /\  b  e.  X )  ->  ( ( a  .-  b )  =  .0.  <->  a  =  b ) )
31303expb 1266 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( a  e.  X  /\  b  e.  X
) )  ->  (
( a  .-  b
)  =  .0.  <->  a  =  b ) )
322, 31sylan 488 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a  .-  b )  =  .0.  <->  a  =  b ) )
3316, 28, 323bitrd 294 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( a ( F  o.  .-  )
b )  =  0  <-> 
a  =  b ) )
341adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  F : X --> RR )
3519adantrr 753 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
a  .-  b )  e.  X )
3634, 35ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( a  .-  b ) )  e.  RR )
372adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  G  e.  Grp )
38 simprll 802 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  a  e.  X )
39 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  c  e.  X )
403, 4grpsubcl 17495 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  a  e.  X  /\  c  e.  X )  ->  ( a  .-  c
)  e.  X )
4137, 38, 39, 40syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
a  .-  c )  e.  X )
4234, 41ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( a  .-  c ) )  e.  RR )
43 simprlr 803 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  b  e.  X )
443, 4grpsubcl 17495 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  b  e.  X  /\  c  e.  X )  ->  ( b  .-  c
)  e.  X )
4537, 43, 39, 44syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
b  .-  c )  e.  X )
4634, 45ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( b  .-  c ) )  e.  RR )
4742, 46readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
( F `  (
a  .-  c )
)  +  ( F `
 ( b  .-  c ) ) )  e.  RR )
483, 4grpsubcl 17495 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  c  e.  X  /\  a  e.  X )  ->  ( c  .-  a
)  e.  X )
4937, 39, 38, 48syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
c  .-  a )  e.  X )
5034, 49ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( c  .-  a ) )  e.  RR )
513, 4grpsubcl 17495 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  c  e.  X  /\  b  e.  X )  ->  ( c  .-  b
)  e.  X )
5237, 39, 43, 51syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
c  .-  b )  e.  X )
5334, 52ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( c  .-  b ) )  e.  RR )
5450, 53readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
( F `  (
c  .-  a )
)  +  ( F `
 ( c  .-  b ) ) )  e.  RR )
553, 4grpnnncan2 17512 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( a  e.  X  /\  b  e.  X  /\  c  e.  X
) )  ->  (
( a  .-  c
)  .-  ( b  .-  c ) )  =  ( a  .-  b
) )
5637, 38, 43, 39, 55syl13anc 1328 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
( a  .-  c
)  .-  ( b  .-  c ) )  =  ( a  .-  b
) )
5756fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( (
a  .-  c )  .-  ( b  .-  c
) ) )  =  ( F `  (
a  .-  b )
) )
58 nrmmetd.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x  .-  y )
)  <_  ( ( F `  x )  +  ( F `  y ) ) )
5958ralrimivva 2971 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x 
.-  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )
6059adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x  .-  y
) )  <_  (
( F `  x
)  +  ( F `
 y ) ) )
61 oveq1 6657 . . . . . . . . . . . . 13  |-  ( x  =  ( a  .-  c )  ->  (
x  .-  y )  =  ( ( a 
.-  c )  .-  y ) )
6261fveq2d 6195 . . . . . . . . . . . 12  |-  ( x  =  ( a  .-  c )  ->  ( F `  ( x  .-  y ) )  =  ( F `  (
( a  .-  c
)  .-  y )
) )
63 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  ( a  .-  c )  ->  ( F `  x )  =  ( F `  ( a  .-  c
) ) )
6463oveq1d 6665 . . . . . . . . . . . 12  |-  ( x  =  ( a  .-  c )  ->  (
( F `  x
)  +  ( F `
 y ) )  =  ( ( F `
 ( a  .-  c ) )  +  ( F `  y
) ) )
6562, 64breq12d 4666 . . . . . . . . . . 11  |-  ( x  =  ( a  .-  c )  ->  (
( F `  (
x  .-  y )
)  <_  ( ( F `  x )  +  ( F `  y ) )  <->  ( F `  ( ( a  .-  c )  .-  y
) )  <_  (
( F `  (
a  .-  c )
)  +  ( F `
 y ) ) ) )
66 oveq2 6658 . . . . . . . . . . . . 13  |-  ( y  =  ( b  .-  c )  ->  (
( a  .-  c
)  .-  y )  =  ( ( a 
.-  c )  .-  ( b  .-  c
) ) )
6766fveq2d 6195 . . . . . . . . . . . 12  |-  ( y  =  ( b  .-  c )  ->  ( F `  ( (
a  .-  c )  .-  y ) )  =  ( F `  (
( a  .-  c
)  .-  ( b  .-  c ) ) ) )
68 fveq2 6191 . . . . . . . . . . . . 13  |-  ( y  =  ( b  .-  c )  ->  ( F `  y )  =  ( F `  ( b  .-  c
) ) )
6968oveq2d 6666 . . . . . . . . . . . 12  |-  ( y  =  ( b  .-  c )  ->  (
( F `  (
a  .-  c )
)  +  ( F `
 y ) )  =  ( ( F `
 ( a  .-  c ) )  +  ( F `  (
b  .-  c )
) ) )
7067, 69breq12d 4666 . . . . . . . . . . 11  |-  ( y  =  ( b  .-  c )  ->  (
( F `  (
( a  .-  c
)  .-  y )
)  <_  ( ( F `  ( a  .-  c ) )  +  ( F `  y
) )  <->  ( F `  ( ( a  .-  c )  .-  (
b  .-  c )
) )  <_  (
( F `  (
a  .-  c )
)  +  ( F `
 ( b  .-  c ) ) ) ) )
7165, 70rspc2va 3323 . . . . . . . . . 10  |-  ( ( ( ( a  .-  c )  e.  X  /\  ( b  .-  c
)  e.  X )  /\  A. x  e.  X  A. y  e.  X  ( F `  ( x  .-  y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )  ->  ( F `  ( ( a  .-  c )  .-  (
b  .-  c )
) )  <_  (
( F `  (
a  .-  c )
)  +  ( F `
 ( b  .-  c ) ) ) )
7241, 45, 60, 71syl21anc 1325 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( (
a  .-  c )  .-  ( b  .-  c
) ) )  <_ 
( ( F `  ( a  .-  c
) )  +  ( F `  ( b 
.-  c ) ) ) )
7357, 72eqbrtrrd 4677 . . . . . . . 8  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( a  .-  b ) )  <_ 
( ( F `  ( a  .-  c
) )  +  ( F `  ( b 
.-  c ) ) ) )
74 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( b  =  c  ->  (
b  e.  X  <->  c  e.  X ) )
7574anbi2d 740 . . . . . . . . . . . . 13  |-  ( b  =  c  ->  (
( a  e.  X  /\  b  e.  X
)  <->  ( a  e.  X  /\  c  e.  X ) ) )
7675anbi2d 740 . . . . . . . . . . . 12  |-  ( b  =  c  ->  (
( ph  /\  (
a  e.  X  /\  b  e.  X )
)  <->  ( ph  /\  ( a  e.  X  /\  c  e.  X
) ) ) )
77 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( b  =  c  ->  (
a  .-  b )  =  ( a  .-  c ) )
7877fveq2d 6195 . . . . . . . . . . . . 13  |-  ( b  =  c  ->  ( F `  ( a  .-  b ) )  =  ( F `  (
a  .-  c )
) )
79 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( b  =  c  ->  (
b  .-  a )  =  ( c  .-  a ) )
8079fveq2d 6195 . . . . . . . . . . . . 13  |-  ( b  =  c  ->  ( F `  ( b  .-  a ) )  =  ( F `  (
c  .-  a )
) )
8178, 80breq12d 4666 . . . . . . . . . . . 12  |-  ( b  =  c  ->  (
( F `  (
a  .-  b )
)  <_  ( F `  ( b  .-  a
) )  <->  ( F `  ( a  .-  c
) )  <_  ( F `  ( c  .-  a ) ) ) )
8276, 81imbi12d 334 . . . . . . . . . . 11  |-  ( b  =  c  ->  (
( ( ph  /\  ( a  e.  X  /\  b  e.  X
) )  ->  ( F `  ( a  .-  b ) )  <_ 
( F `  (
b  .-  a )
) )  <->  ( ( ph  /\  ( a  e.  X  /\  c  e.  X ) )  -> 
( F `  (
a  .-  c )
)  <_  ( F `  ( c  .-  a
) ) ) ) )
832adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  ->  G  e.  Grp )
843, 29grpidcl 17450 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  .0.  e.  X )
8583, 84syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  ->  .0.  e.  X )
86 simprr 796 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
b  e.  X )
87 simprl 794 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
a  e.  X )
883, 4grpsubcl 17495 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  b  e.  X  /\  a  e.  X )  ->  ( b  .-  a
)  e.  X )
8983, 86, 87, 88syl3anc 1326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( b  .-  a
)  e.  X )
9059adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x 
.-  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )
91 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( x  =  .0.  ->  (
x  .-  y )  =  (  .0.  .-  y
) )
9291fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( x  =  .0.  ->  ( F `  ( x  .-  y ) )  =  ( F `  (  .0.  .-  y ) ) )
93 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  .0.  ->  ( F `  x )  =  ( F `  .0.  ) )
9493oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( x  =  .0.  ->  (
( F `  x
)  +  ( F `
 y ) )  =  ( ( F `
 .0.  )  +  ( F `  y
) ) )
9592, 94breq12d 4666 . . . . . . . . . . . . . 14  |-  ( x  =  .0.  ->  (
( F `  (
x  .-  y )
)  <_  ( ( F `  x )  +  ( F `  y ) )  <->  ( F `  (  .0.  .-  y
) )  <_  (
( F `  .0.  )  +  ( F `  y ) ) ) )
96 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( b  .-  a )  ->  (  .0.  .-  y )  =  (  .0.  .-  (
b  .-  a )
) )
9796fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( y  =  ( b  .-  a )  ->  ( F `  (  .0.  .-  y ) )  =  ( F `  (  .0.  .-  ( b  .-  a ) ) ) )
98 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( b  .-  a )  ->  ( F `  y )  =  ( F `  ( b  .-  a
) ) )
9998oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( y  =  ( b  .-  a )  ->  (
( F `  .0.  )  +  ( F `  y ) )  =  ( ( F `  .0.  )  +  ( F `  ( b  .-  a ) ) ) )
10097, 99breq12d 4666 . . . . . . . . . . . . . 14  |-  ( y  =  ( b  .-  a )  ->  (
( F `  (  .0.  .-  y ) )  <_  ( ( F `
 .0.  )  +  ( F `  y
) )  <->  ( F `  (  .0.  .-  (
b  .-  a )
) )  <_  (
( F `  .0.  )  +  ( F `  ( b  .-  a
) ) ) ) )
10195, 100rspc2va 3323 . . . . . . . . . . . . 13  |-  ( ( (  .0.  e.  X  /\  ( b  .-  a
)  e.  X )  /\  A. x  e.  X  A. y  e.  X  ( F `  ( x  .-  y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )  ->  ( F `  (  .0.  .-  ( b  .-  a ) ) )  <_  ( ( F `
 .0.  )  +  ( F `  (
b  .-  a )
) ) )
10285, 89, 90, 101syl21anc 1325 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( F `  (  .0.  .-  ( b  .-  a ) ) )  <_  ( ( F `
 .0.  )  +  ( F `  (
b  .-  a )
) ) )
103 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( invg `  G )  =  ( invg `  G )
1043, 4, 103, 29grpinvval2 17498 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( b  .-  a
)  e.  X )  ->  ( ( invg `  G ) `
 ( b  .-  a ) )  =  (  .0.  .-  (
b  .-  a )
) )
10583, 89, 104syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( invg `  G ) `  (
b  .-  a )
)  =  (  .0.  .-  ( b  .-  a
) ) )
1063, 4, 103grpinvsub 17497 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  b  e.  X  /\  a  e.  X )  ->  ( ( invg `  G ) `  (
b  .-  a )
)  =  ( a 
.-  b ) )
10783, 86, 87, 106syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( invg `  G ) `  (
b  .-  a )
)  =  ( a 
.-  b ) )
108105, 107eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
(  .0.  .-  (
b  .-  a )
)  =  ( a 
.-  b ) )
109108fveq2d 6195 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( F `  (  .0.  .-  ( b  .-  a ) ) )  =  ( F `  ( a  .-  b
) ) )
1102, 84syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  .0.  e.  X )
111 pm5.501 356 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  .0.  ->  (
( F `  x
)  =  0  <->  (
x  =  .0.  <->  ( F `  x )  =  0 ) ) )
112 bicom 212 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  .0.  <->  ( F `  x )  =  0 )  <->  ( ( F `
 x )  =  0  <->  x  =  .0.  ) )
113111, 112syl6bb 276 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  .0.  ->  (
( F `  x
)  =  0  <->  (
( F `  x
)  =  0  <->  x  =  .0.  ) ) )
11493eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  .0.  ->  (
( F `  x
)  =  0  <->  ( F `  .0.  )  =  0 ) )
115113, 114bitr3d 270 . . . . . . . . . . . . . . . . 17  |-  ( x  =  .0.  ->  (
( ( F `  x )  =  0  <-> 
x  =  .0.  )  <->  ( F `  .0.  )  =  0 ) )
116115rspccva 3308 . . . . . . . . . . . . . . . 16  |-  ( ( A. x  e.  X  ( ( F `  x )  =  0  <-> 
x  =  .0.  )  /\  .0.  e.  X )  ->  ( F `  .0.  )  =  0
)
11721, 110, 116syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  .0.  )  =  0 )
118117adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( F `  .0.  )  =  0 )
119118oveq1d 6665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( F `  .0.  )  +  ( F `  ( b  .-  a ) ) )  =  ( 0  +  ( F `  (
b  .-  a )
) ) )
1201adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  ->  F : X --> RR )
121120, 89ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( F `  (
b  .-  a )
)  e.  RR )
122121recnd 10068 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( F `  (
b  .-  a )
)  e.  CC )
123122addid2d 10237 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( 0  +  ( F `  ( b 
.-  a ) ) )  =  ( F `
 ( b  .-  a ) ) )
124119, 123eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( F `  .0.  )  +  ( F `  ( b  .-  a ) ) )  =  ( F `  ( b  .-  a
) ) )
125102, 109, 1243brtr3d 4684 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( F `  (
a  .-  b )
)  <_  ( F `  ( b  .-  a
) ) )
12682, 125chvarv 2263 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  X  /\  c  e.  X ) )  -> 
( F `  (
a  .-  c )
)  <_  ( F `  ( c  .-  a
) ) )
127126adantrlr 759 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( a  .-  c ) )  <_ 
( F `  (
c  .-  a )
) )
128 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
a  e.  X  <->  b  e.  X ) )
129128anbi1d 741 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  (
( a  e.  X  /\  c  e.  X
)  <->  ( b  e.  X  /\  c  e.  X ) ) )
130129anbi2d 740 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
( ph  /\  (
a  e.  X  /\  c  e.  X )
)  <->  ( ph  /\  ( b  e.  X  /\  c  e.  X
) ) ) )
131 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
a  .-  c )  =  ( b  .-  c ) )
132131fveq2d 6195 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  ( F `  ( a  .-  c ) )  =  ( F `  (
b  .-  c )
) )
133 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
c  .-  a )  =  ( c  .-  b ) )
134133fveq2d 6195 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  ( F `  ( c  .-  a ) )  =  ( F `  (
c  .-  b )
) )
135132, 134breq12d 4666 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
( F `  (
a  .-  c )
)  <_  ( F `  ( c  .-  a
) )  <->  ( F `  ( b  .-  c
) )  <_  ( F `  ( c  .-  b ) ) ) )
136130, 135imbi12d 334 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
( ( ph  /\  ( a  e.  X  /\  c  e.  X
) )  ->  ( F `  ( a  .-  c ) )  <_ 
( F `  (
c  .-  a )
) )  <->  ( ( ph  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
b  .-  c )
)  <_  ( F `  ( c  .-  b
) ) ) ) )
137136, 126chvarv 2263 . . . . . . . . . 10  |-  ( (
ph  /\  ( b  e.  X  /\  c  e.  X ) )  -> 
( F `  (
b  .-  c )
)  <_  ( F `  ( c  .-  b
) ) )
138137adantrll 758 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( b  .-  c ) )  <_ 
( F `  (
c  .-  b )
) )
13942, 46, 50, 53, 127, 138le2addd 10646 . . . . . . . 8  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
( F `  (
a  .-  c )
)  +  ( F `
 ( b  .-  c ) ) )  <_  ( ( F `
 ( c  .-  a ) )  +  ( F `  (
c  .-  b )
) ) )
14036, 47, 54, 73, 139letrd 10194 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  ( F `  ( a  .-  b ) )  <_ 
( ( F `  ( c  .-  a
) )  +  ( F `  ( c 
.-  b ) ) ) )
14115adantrr 753 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
a ( F  o.  .-  ) b )  =  ( F `  (
a  .-  b )
) )
1426adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  .-  :
( X  X.  X
) --> X )
143 opelxpi 5148 . . . . . . . . . . 11  |-  ( ( c  e.  X  /\  a  e.  X )  -> 
<. c ,  a >.  e.  ( X  X.  X
) )
14439, 38, 143syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  <. c ,  a >.  e.  ( X  X.  X ) )
145 fvco3 6275 . . . . . . . . . 10  |-  ( ( 
.-  : ( X  X.  X ) --> X  /\  <. c ,  a
>.  e.  ( X  X.  X ) )  -> 
( ( F  o.  .-  ) `  <. c ,  a >. )  =  ( F `  (  .-  `  <. c ,  a >. )
) )
146142, 144, 145syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
( F  o.  .-  ) `  <. c ,  a >. )  =  ( F `  (  .-  ` 
<. c ,  a >.
) ) )
147 df-ov 6653 . . . . . . . . 9  |-  ( c ( F  o.  .-  ) a )  =  ( ( F  o.  .-  ) `  <. c ,  a >. )
148 df-ov 6653 . . . . . . . . . 10  |-  ( c 
.-  a )  =  (  .-  `  <. c ,  a >. )
149148fveq2i 6194 . . . . . . . . 9  |-  ( F `
 ( c  .-  a ) )  =  ( F `  (  .-  `  <. c ,  a
>. ) )
150146, 147, 1493eqtr4g 2681 . . . . . . . 8  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
c ( F  o.  .-  ) a )  =  ( F `  (
c  .-  a )
) )
151 opelxpi 5148 . . . . . . . . . . 11  |-  ( ( c  e.  X  /\  b  e.  X )  -> 
<. c ,  b >.  e.  ( X  X.  X
) )
15239, 43, 151syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  <. c ,  b >.  e.  ( X  X.  X ) )
153 fvco3 6275 . . . . . . . . . 10  |-  ( ( 
.-  : ( X  X.  X ) --> X  /\  <. c ,  b
>.  e.  ( X  X.  X ) )  -> 
( ( F  o.  .-  ) `  <. c ,  b >. )  =  ( F `  (  .-  `  <. c ,  b >. )
) )
154142, 152, 153syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
( F  o.  .-  ) `  <. c ,  b >. )  =  ( F `  (  .-  ` 
<. c ,  b >.
) ) )
155 df-ov 6653 . . . . . . . . 9  |-  ( c ( F  o.  .-  ) b )  =  ( ( F  o.  .-  ) `  <. c ,  b >. )
156 df-ov 6653 . . . . . . . . . 10  |-  ( c 
.-  b )  =  (  .-  `  <. c ,  b >. )
157156fveq2i 6194 . . . . . . . . 9  |-  ( F `
 ( c  .-  b ) )  =  ( F `  (  .-  `  <. c ,  b
>. ) )
158154, 155, 1573eqtr4g 2681 . . . . . . . 8  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
c ( F  o.  .-  ) b )  =  ( F `  (
c  .-  b )
) )
159150, 158oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
( c ( F  o.  .-  ) a
)  +  ( c ( F  o.  .-  ) b ) )  =  ( ( F `
 ( c  .-  a ) )  +  ( F `  (
c  .-  b )
) ) )
160140, 141, 1593brtr4d 4685 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  X  /\  b  e.  X )  /\  c  e.  X
) )  ->  (
a ( F  o.  .-  ) b )  <_ 
( ( c ( F  o.  .-  )
a )  +  ( c ( F  o.  .-  ) b ) ) )
161160expr 643 . . . . 5  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( c  e.  X  ->  ( a ( F  o.  .-  ) b
)  <_  ( (
c ( F  o.  .-  ) a )  +  ( c ( F  o.  .-  ) b
) ) ) )
162161ralrimiv 2965 . . . 4  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  ->  A. c  e.  X  ( a ( F  o.  .-  ) b
)  <_  ( (
c ( F  o.  .-  ) a )  +  ( c ( F  o.  .-  ) b
) ) )
16333, 162jca 554 . . 3  |-  ( (
ph  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( ( ( a ( F  o.  .-  ) b )  =  0  <->  a  =  b )  /\  A. c  e.  X  ( a
( F  o.  .-  ) b )  <_ 
( ( c ( F  o.  .-  )
a )  +  ( c ( F  o.  .-  ) b ) ) ) )
164163ralrimivva 2971 . 2  |-  ( ph  ->  A. a  e.  X  A. b  e.  X  ( ( ( a ( F  o.  .-  ) b )  =  0  <->  a  =  b )  /\  A. c  e.  X  ( a
( F  o.  .-  ) b )  <_ 
( ( c ( F  o.  .-  )
a )  +  ( c ( F  o.  .-  ) b ) ) ) )
165 fvex 6201 . . . 4  |-  ( Base `  G )  e.  _V
1663, 165eqeltri 2697 . . 3  |-  X  e. 
_V
167 ismet 22128 . . 3  |-  ( X  e.  _V  ->  (
( F  o.  .-  )  e.  ( Met `  X )  <->  ( ( F  o.  .-  ) : ( X  X.  X
) --> RR  /\  A. a  e.  X  A. b  e.  X  (
( ( a ( F  o.  .-  )
b )  =  0  <-> 
a  =  b )  /\  A. c  e.  X  ( a ( F  o.  .-  )
b )  <_  (
( c ( F  o.  .-  ) a
)  +  ( c ( F  o.  .-  ) b ) ) ) ) ) )
168166, 167ax-mp 5 . 2  |-  ( ( F  o.  .-  )  e.  ( Met `  X
)  <->  ( ( F  o.  .-  ) :
( X  X.  X
) --> RR  /\  A. a  e.  X  A. b  e.  X  (
( ( a ( F  o.  .-  )
b )  =  0  <-> 
a  =  b )  /\  A. c  e.  X  ( a ( F  o.  .-  )
b )  <_  (
( c ( F  o.  .-  ) a
)  +  ( c ( F  o.  .-  ) b ) ) ) ) )
1698, 164, 168sylanbrc 698 1  |-  ( ph  ->  ( F  o.  .-  )  e.  ( Met `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183   class class class wbr 4653    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075   Basecbs 15857   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424   Metcme 19732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-met 19740
This theorem is referenced by:  abvmet  22380  tngngpd  22457
  Copyright terms: Public domain W3C validator