MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscopn Structured version   Visualization version   Unicode version

Theorem dscopn 22378
Description: The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
dscmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
Assertion
Ref Expression
dscopn  |-  ( X  e.  V  ->  ( MetOpen
`  D )  =  ~P X )
Distinct variable group:    x, y, X
Allowed substitution hints:    D( x, y)    V( x, y)

Proof of Theorem dscopn
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dscmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
21dscmet 22377 . . . . . 6  |-  ( X  e.  V  ->  D  e.  ( Met `  X
) )
3 metxmet 22139 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
42, 3syl 17 . . . . 5  |-  ( X  e.  V  ->  D  e.  ( *Met `  X ) )
5 eqid 2622 . . . . . 6  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
65elmopn 22247 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
u  e.  ( MetOpen `  D )  <->  ( u  C_  X  /\  A. v  e.  u  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) ) ) )
74, 6syl 17 . . . 4  |-  ( X  e.  V  ->  (
u  e.  ( MetOpen `  D )  <->  ( u  C_  X  /\  A. v  e.  u  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) ) ) )
8 simpll 790 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  X  e.  V )
9 ssel2 3598 . . . . . . . . . 10  |-  ( ( u  C_  X  /\  v  e.  u )  ->  v  e.  X )
109adantll 750 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  v  e.  X )
118, 10jca 554 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  ( X  e.  V  /\  v  e.  X ) )
12 velsn 4193 . . . . . . . . . . . 12  |-  ( w  e.  { v }  <-> 
w  =  v )
13 eleq1a 2696 . . . . . . . . . . . . . . 15  |-  ( v  e.  X  ->  (
w  =  v  ->  w  e.  X )
)
14 simpl 473 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  X  /\  ( v D w )  <  1 )  ->  w  e.  X
)
1514a1i 11 . . . . . . . . . . . . . . 15  |-  ( v  e.  X  ->  (
( w  e.  X  /\  ( v D w )  <  1 )  ->  w  e.  X
) )
16 eqeq12 2635 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  =  v  /\  y  =  w )  ->  ( x  =  y  <-> 
v  =  w ) )
1716ifbid 4108 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  v  /\  y  =  w )  ->  if ( x  =  y ,  0 ,  1 )  =  if ( v  =  w ,  0 ,  1 ) )
18 0re 10040 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  RR
19 1re 10039 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  RR
2018, 19keepel 4155 . . . . . . . . . . . . . . . . . . . . 21  |-  if ( v  =  w ,  0 ,  1 )  e.  RR
2120elexi 3213 . . . . . . . . . . . . . . . . . . . 20  |-  if ( v  =  w ,  0 ,  1 )  e.  _V
2217, 1, 21ovmpt2a 6791 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( v D w )  =  if ( v  =  w ,  0 ,  1 ) )
2322breq1d 4663 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( ( v D w )  <  1  <->  if ( v  =  w ,  0 ,  1 )  <  1 ) )
2419ltnri 10146 . . . . . . . . . . . . . . . . . . . . . 22  |-  -.  1  <  1
25 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  v  =  w  ->  if ( v  =  w ,  0 ,  1 )  =  1 )
2625breq1d 4663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  v  =  w  -> 
( if ( v  =  w ,  0 ,  1 )  <  1  <->  1  <  1
) )
2724, 26mtbiri 317 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  v  =  w  ->  -.  if ( v  =  w ,  0 ,  1 )  <  1
)
2827con4i 113 . . . . . . . . . . . . . . . . . . . 20  |-  ( if ( v  =  w ,  0 ,  1 )  <  1  -> 
v  =  w )
29 iftrue 4092 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  w  ->  if ( v  =  w ,  0 ,  1 )  =  0 )
30 0lt1 10550 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  1
3129, 30syl6eqbr 4692 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  if ( v  =  w ,  0 ,  1 )  <  1 )
3228, 31impbii 199 . . . . . . . . . . . . . . . . . . 19  |-  ( if ( v  =  w ,  0 ,  1 )  <  1  <->  v  =  w )
33 equcom 1945 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  <->  w  =  v )
3432, 33bitri 264 . . . . . . . . . . . . . . . . . 18  |-  ( if ( v  =  w ,  0 ,  1 )  <  1  <->  w  =  v )
3523, 34syl6rbb 277 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( w  =  v  <-> 
( v D w )  <  1 ) )
36 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  X  /\  w  e.  X )  ->  w  e.  X )
3736biantrurd 529 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( ( v D w )  <  1  <->  ( w  e.  X  /\  ( v D w )  <  1 ) ) )
3835, 37bitrd 268 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( w  =  v  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) )
3938ex 450 . . . . . . . . . . . . . . 15  |-  ( v  e.  X  ->  (
w  e.  X  -> 
( w  =  v  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) ) )
4013, 15, 39pm5.21ndd 369 . . . . . . . . . . . . . 14  |-  ( v  e.  X  ->  (
w  =  v  <->  ( w  e.  X  /\  (
v D w )  <  1 ) ) )
4140adantl 482 . . . . . . . . . . . . 13  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  =  v  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) )
42 1rp 11836 . . . . . . . . . . . . . . . 16  |-  1  e.  RR+
43 rpxr 11840 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
4442, 43ax-mp 5 . . . . . . . . . . . . . . 15  |-  1  e.  RR*
45 elbl 22193 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  v  e.  X  /\  1  e.  RR* )  ->  ( w  e.  ( v ( ball `  D
) 1 )  <->  ( w  e.  X  /\  (
v D w )  <  1 ) ) )
4644, 45mp3an3 1413 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  v  e.  X
)  ->  ( w  e.  ( v ( ball `  D ) 1 )  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) )
474, 46sylan 488 . . . . . . . . . . . . 13  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  e.  ( v ( ball `  D
) 1 )  <->  ( w  e.  X  /\  (
v D w )  <  1 ) ) )
4841, 47bitr4d 271 . . . . . . . . . . . 12  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  =  v  <-> 
w  e.  ( v ( ball `  D
) 1 ) ) )
4912, 48syl5bb 272 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  e.  {
v }  <->  w  e.  ( v ( ball `  D ) 1 ) ) )
5049eqrdv 2620 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  v  e.  X )  ->  { v }  =  ( v ( ball `  D ) 1 ) )
51 blelrn 22222 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  v  e.  X  /\  1  e.  RR* )  ->  ( v ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )
5244, 51mp3an3 1413 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  v  e.  X
)  ->  ( v
( ball `  D )
1 )  e.  ran  ( ball `  D )
)
534, 52sylan 488 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( v ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )
5450, 53eqeltrd 2701 . . . . . . . . 9  |-  ( ( X  e.  V  /\  v  e.  X )  ->  { v }  e.  ran  ( ball `  D
) )
55 snssi 4339 . . . . . . . . . 10  |-  ( v  e.  u  ->  { v }  C_  u )
56 vsnid 4209 . . . . . . . . . 10  |-  v  e. 
{ v }
5755, 56jctil 560 . . . . . . . . 9  |-  ( v  e.  u  ->  (
v  e.  { v }  /\  { v }  C_  u )
)
58 eleq2 2690 . . . . . . . . . . 11  |-  ( w  =  { v }  ->  ( v  e.  w  <->  v  e.  {
v } ) )
59 sseq1 3626 . . . . . . . . . . 11  |-  ( w  =  { v }  ->  ( w  C_  u 
<->  { v }  C_  u ) )
6058, 59anbi12d 747 . . . . . . . . . 10  |-  ( w  =  { v }  ->  ( ( v  e.  w  /\  w  C_  u )  <->  ( v  e.  { v }  /\  { v }  C_  u
) ) )
6160rspcev 3309 . . . . . . . . 9  |-  ( ( { v }  e.  ran  ( ball `  D
)  /\  ( v  e.  { v }  /\  { v }  C_  u
) )  ->  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) )
6254, 57, 61syl2an 494 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  v  e.  X
)  /\  v  e.  u )  ->  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) )
6311, 62sylancom 701 . . . . . . 7  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) )
6463ralrimiva 2966 . . . . . 6  |-  ( ( X  e.  V  /\  u  C_  X )  ->  A. v  e.  u  E. w  e.  ran  ( ball `  D )
( v  e.  w  /\  w  C_  u ) )
6564ex 450 . . . . 5  |-  ( X  e.  V  ->  (
u  C_  X  ->  A. v  e.  u  E. w  e.  ran  ( ball `  D ) ( v  e.  w  /\  w  C_  u ) ) )
6665pm4.71d 666 . . . 4  |-  ( X  e.  V  ->  (
u  C_  X  <->  ( u  C_  X  /\  A. v  e.  u  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) ) ) )
677, 66bitr4d 271 . . 3  |-  ( X  e.  V  ->  (
u  e.  ( MetOpen `  D )  <->  u  C_  X
) )
68 selpw 4165 . . 3  |-  ( u  e.  ~P X  <->  u  C_  X
)
6967, 68syl6bbr 278 . 2  |-  ( X  e.  V  ->  (
u  e.  ( MetOpen `  D )  <->  u  e.  ~P X ) )
7069eqrdv 2620 1  |-  ( X  e.  V  ->  ( MetOpen
`  D )  =  ~P X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ifcif 4086   ~Pcpw 4158   {csn 4177   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937   RR*cxr 10073    < clt 10074   RR+crp 11832   *Metcxmt 19731   Metcme 19732   ballcbl 19733   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-bases 20750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator