MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Structured version   Visualization version   Unicode version

Theorem om2uzlti 12749
Description: Less-than relation for  G (see om2uz0i 12746). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uzlti  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    G( x)

Proof of Theorem om2uzlti
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2690 . . . . 5  |-  ( z  =  (/)  ->  ( A  e.  z  <->  A  e.  (/) ) )
2 fveq2 6191 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
32breq2d 4665 . . . . 5  |-  ( z  =  (/)  ->  ( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  (/) ) ) )
41, 3imbi12d 334 . . . 4  |-  ( z  =  (/)  ->  ( ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) )  <->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) ) )
54imbi2d 330 . . 3  |-  ( z  =  (/)  ->  ( ( A  e.  om  ->  ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) ) )  <-> 
( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) ) ) )
6 eleq2 2690 . . . . 5  |-  ( z  =  y  ->  ( A  e.  z  <->  A  e.  y ) )
7 fveq2 6191 . . . . . 6  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
87breq2d 4665 . . . . 5  |-  ( z  =  y  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  y )
) )
96, 8imbi12d 334 . . . 4  |-  ( z  =  y  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) )
109imbi2d 330 . . 3  |-  ( z  =  y  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  y  ->  ( G `
 A )  < 
( G `  y
) ) ) ) )
11 eleq2 2690 . . . . 5  |-  ( z  =  suc  y  -> 
( A  e.  z  <-> 
A  e.  suc  y
) )
12 fveq2 6191 . . . . . 6  |-  ( z  =  suc  y  -> 
( G `  z
)  =  ( G `
 suc  y )
)
1312breq2d 4665 . . . . 5  |-  ( z  =  suc  y  -> 
( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
1411, 13imbi12d 334 . . . 4  |-  ( z  =  suc  y  -> 
( ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
1514imbi2d 330 . . 3  |-  ( z  =  suc  y  -> 
( ( A  e. 
om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
16 eleq2 2690 . . . . 5  |-  ( z  =  B  ->  ( A  e.  z  <->  A  e.  B ) )
17 fveq2 6191 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1817breq2d 4665 . . . . 5  |-  ( z  =  B  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  B )
) )
1916, 18imbi12d 334 . . . 4  |-  ( z  =  B  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
2019imbi2d 330 . . 3  |-  ( z  =  B  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  B  ->  ( G `
 A )  < 
( G `  B
) ) ) ) )
21 noel 3919 . . . . 5  |-  -.  A  e.  (/)
2221pm2.21i 116 . . . 4  |-  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) )
2322a1i 11 . . 3  |-  ( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) )
24 id 22 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )
25 fveq2 6191 . . . . . . . 8  |-  ( A  =  y  ->  ( G `  A )  =  ( G `  y ) )
2625a1i 11 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  =  y  ->  ( G `  A )  =  ( G `  y ) ) )
2724, 26orim12d 883 . . . . . 6  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
28 elsuc2g 5793 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
2928bicomd 213 . . . . . . . 8  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
3029adantl 482 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
31 om2uz.1 . . . . . . . . . . 11  |-  C  e.  ZZ
32 om2uz.2 . . . . . . . . . . 11  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
3331, 32om2uzsuci 12747 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  suc  y )  =  ( ( G `
 y )  +  1 ) )
3433breq2d 4665 . . . . . . . . 9  |-  ( y  e.  om  ->  (
( G `  A
)  <  ( G `  suc  y )  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
3534adantl 482 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <  ( G `  suc  y )  <-> 
( G `  A
)  <  ( ( G `  y )  +  1 ) ) )
3631, 32om2uzuzi 12748 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  ( ZZ>= `  C )
)
3731, 32om2uzuzi 12748 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  ( ZZ>= `  C )
)
38 eluzelz 11697 . . . . . . . . . 10  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  ZZ )
39 eluzelz 11697 . . . . . . . . . 10  |-  ( ( G `  y )  e.  ( ZZ>= `  C
)  ->  ( G `  y )  e.  ZZ )
40 zleltp1 11428 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4138, 39, 40syl2an 494 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ( ZZ>= `  C )  /\  ( G `  y )  e.  ( ZZ>= `  C )
)  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4236, 37, 41syl2an 494 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4336, 38syl 17 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( G `  A )  e.  ZZ )
4443zred 11482 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  RR )
4537, 39syl 17 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  y )  e.  ZZ )
4645zred 11482 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  RR )
47 leloe 10124 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  RR  /\  ( G `  y )  e.  RR )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4844, 46, 47syl2an 494 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4935, 42, 483bitr2rd 297 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( G `
 A )  < 
( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
5030, 49imbi12d 334 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  e.  y  \/  A  =  y )  -> 
( ( G `  A )  <  ( G `  y )  \/  ( G `  A
)  =  ( G `
 y ) ) )  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5127, 50syl5ib 234 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5251expcom 451 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
5352a2d 29 . . 3  |-  ( y  e.  om  ->  (
( A  e.  om  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )  ->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A
)  <  ( G `  suc  y ) ) ) ) )
545, 10, 15, 20, 23, 53finds 7092 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  -> 
( G `  A
)  <  ( G `  B ) ) ) )
5554impcom 446 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    |` cres 5116   suc csuc 5725   ` cfv 5888  (class class class)co 6650   omcom 7065   reccrdg 7505   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  om2uzlt2i  12750  om2uzf1oi  12752
  Copyright terms: Public domain W3C validator