HomeHome Metamath Proof Explorer
Theorem List (p. 128 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 12701-12800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem0mod 12701 Special case: 0 modulo a positive real number is 0. (Contributed by Mario Carneiro, 22-Feb-2014.)
 |-  ( N  e.  RR+  ->  ( 0  mod  N )  =  0 )
 
Theorem1mod 12702 Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  ( ( N  e.  RR  /\  1  <  N )  ->  ( 1  mod 
 N )  =  1 )
 
Theoremmodabs 12703 Absorption law for modulo. (Contributed by NM, 29-Dec-2008.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR+ )  /\  B  <_  C )  ->  ( ( A  mod  B )  mod  C )  =  ( A 
 mod  B ) )
 
Theoremmodabs2 12704 Absorption law for modulo. (Contributed by NM, 29-Dec-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 mod  B )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodcyc 12705 The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  N  e.  ZZ )  ->  ( ( A  +  ( N  x.  B ) )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodcyc2 12706 The modulo operation is periodic. (Contributed by NM, 12-Nov-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  N  e.  ZZ )  ->  ( ( A  -  ( B  x.  N ) )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodadd1 12707 Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D ) )  ->  ( ( A  +  C ) 
 mod  D )  =  ( ( B  +  C )  mod  D ) )
 
Theoremmodaddabs 12708 Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( ( ( A 
 mod  C )  +  ( B  mod  C ) ) 
 mod  C )  =  ( ( A  +  B )  mod  C ) )
 
Theoremmodaddmod 12709 The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  M  e.  RR+ )  ->  ( ( ( A 
 mod  M )  +  B )  mod  M )  =  ( ( A  +  B )  mod  M ) )
 
Theoremmuladdmodid 12710 The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.)
 |-  ( ( N  e.  ZZ  /\  M  e.  RR+  /\  A  e.  ( 0 [,) M ) ) 
 ->  ( ( ( N  x.  M )  +  A )  mod  M )  =  A )
 
Theoremmulp1mod1 12711 The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>=
 `  2 ) ) 
 ->  ( ( ( N  x.  A )  +  1 )  mod  N )  =  1 )
 
Theoremmodmuladd 12712* Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  (
 0 [,) M )  /\  M  e.  RR+ )  ->  ( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( (
 k  x.  M )  +  B ) ) )
 
Theoremmodmuladdim 12713* Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  M  e.  RR+ )  ->  ( ( A 
 mod  M )  =  B  ->  E. k  e.  ZZ  A  =  ( (
 k  x.  M )  +  B ) ) )
 
Theoremmodmuladdnn0 12714* Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
 |-  ( ( A  e.  NN0  /\  M  e.  RR+ )  ->  ( ( A  mod  M )  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
 
Theoremnegmod 12715 The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020.)
 |-  ( ( A  e.  RR  /\  N  e.  RR+ )  ->  ( -u A  mod  N )  =  ( ( N  -  A )  mod  N ) )
 
Theoremm1modnnsub1 12716 Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
 |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( M  -  1 ) )
 
Theoremm1modge3gt1 12717 Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
 |-  ( M  e.  ( ZZ>=
 `  3 )  -> 
 1  <  ( -u 1  mod  M ) )
 
Theoremaddmodid 12718 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
 |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( ( M  +  A )  mod  M )  =  A )
 
Theoremaddmodidr 12719 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( ( A  +  M )  mod  M )  =  A )
 
Theoremmodadd2mod 12720 The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  M  e.  RR+ )  ->  ( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod  M ) )
 
Theoremmodm1p1mod0 12721 If an real number modulo a positive real number equals the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals 0. (Contributed by AV, 2-Nov-2018.)
 |-  ( ( A  e.  RR  /\  M  e.  RR+ )  ->  ( ( A 
 mod  M )  =  ( M  -  1 ) 
 ->  ( ( A  +  1 )  mod  M )  =  0 ) )
 
Theoremmodltm1p1mod 12722 If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018.)
 |-  ( ( A  e.  RR  /\  M  e.  RR+  /\  ( A  mod  M )  <  ( M  -  1 ) )  ->  ( ( A  +  1 )  mod  M )  =  ( ( A 
 mod  M )  +  1 ) )
 
Theoremmodmul1 12723 Multiplication property of the modulo operation. Note that the multiplier  C must be an integer. (Contributed by NM, 12-Nov-2008.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D ) )  ->  ( ( A  x.  C ) 
 mod  D )  =  ( ( B  x.  C )  mod  D ) )
 
Theoremmodmul12d 12724 Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  x.  C )  mod  E )  =  ( ( B  x.  D )  mod  E ) )
 
Theoremmodnegd 12725 Negation property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  ( A  mod  C )  =  ( B  mod  C ) )   =>    |-  ( ph  ->  ( -u A  mod  C )  =  ( -u B  mod  C ) )
 
Theoremmodadd12d 12726 Additive property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  +  C )  mod  E )  =  ( ( B  +  D )  mod  E ) )
 
Theoremmodsub12d 12727 Subtraction property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  -  C )  mod  E )  =  ( ( B  -  D )  mod  E ) )
 
Theoremmodsubmod 12728 The difference of a real number modulo a positive real number and another real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  M  e.  RR+ )  ->  ( ( ( A 
 mod  M )  -  B )  mod  M )  =  ( ( A  -  B )  mod  M ) )
 
Theoremmodsubmodmod 12729 The difference of a real number modulo a positive real number and another real number modulo this positive real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  M  e.  RR+ )  ->  ( ( ( A 
 mod  M )  -  ( B  mod  M ) ) 
 mod  M )  =  ( ( A  -  B )  mod  M ) )
 
Theorem2txmodxeq0 12730 Two times a positive real number modulo the real number is zero. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
 |-  ( X  e.  RR+  ->  ( ( 2  x.  X )  mod  X )  =  0 )
 
Theorem2submod 12731 If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  ( B  <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )
 
Theoremmodifeq2int 12732 If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  ( 2  x.  B ) )  ->  ( A  mod  B )  =  if ( A  <  B ,  A ,  ( A  -  B ) ) )
 
Theoremmodaddmodup 12733 The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  ( ( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodaddmodlo 12734 The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodmulmod 12735 The product of a real number modulo a positive real number and an integer equals the product of the real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  ZZ  /\  M  e.  RR+ )  ->  ( ( ( A 
 mod  M )  x.  B )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodmulmodr 12736 The product of an integer and a real number modulo a positive real number equals the product of the integer and the real number modulo the positive real number. (Contributed by Alexander van der Vekens, 9-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  M  e.  RR+ )  ->  ( ( A  x.  ( B  mod  M ) )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodaddmulmod 12737 The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ZZ )  /\  M  e.  RR+ )  ->  ( ( A  +  ( ( B  mod  M )  x.  C ) )  mod  M )  =  ( ( A  +  ( B  x.  C ) ) 
 mod  M ) )
 
Theoremmoddi 12738 Distribute multiplication over a modulo operation. (Contributed by NM, 11-Nov-2008.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  x.  ( B  mod  C ) )  =  ( ( A  x.  B )  mod  ( A  x.  C ) ) )
 
Theoremmodsubdir 12739 Distribute the modulo operation over a subtraction. (Contributed by NM, 30-Dec-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) ) )
 
Theoremmodeqmodmin 12740 A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018.)
 |-  ( ( A  e.  RR  /\  M  e.  RR+ )  ->  ( A  mod  M )  =  ( ( A  -  M ) 
 mod  M ) )
 
Theoremmodirr 12741 A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( A  /  B )  e.  ( RR  \  QQ ) )  ->  ( A  mod  B )  =/=  0 )
 
Theoremmodfzo0difsn 12742* For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( (
 0..^ N )  \  { J } ) ) 
 ->  E. i  e.  (
 1..^ N ) K  =  ( ( i  +  J )  mod  N ) )
 
Theoremmodsumfzodifsn 12743 The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N )  \  { J } ) )
 
Theoremmodlteq 12744 Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N ) ) 
 ->  ( ( I  mod  N )  =  ( J 
 mod  N )  <->  I  =  J ) )
 
Theoremaddmodlteq 12745 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. A much shorter proof exists if the "divides" relation  || can be used, see addmodlteqALT 15047. (Contributed by AV, 20-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
 
5.6.3  Miscellaneous theorems about integers
 
Theoremom2uz0i 12746* The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (This series of theorems generalizes an earlier series for  NN0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   =>    |-  ( G `  (/) )  =  C
 
Theoremom2uzsuci 12747* The value of  G (see om2uz0i 12746) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   =>    |-  ( A  e.  om  ->  ( G `  suc  A )  =  ( ( G `  A )  +  1 ) )
 
Theoremom2uzuzi 12748* The value  G (see om2uz0i 12746) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   =>    |-  ( A  e.  om  ->  ( G `  A )  e.  ( ZZ>= `  C ) )
 
Theoremom2uzlti 12749* Less-than relation for  G (see om2uz0i 12746). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   =>    |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A )  <  ( G `
  B ) ) )
 
Theoremom2uzlt2i 12750* The mapping  G (see om2uz0i 12746) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   =>    |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  e.  B 
 <->  ( G `  A )  <  ( G `  B ) ) )
 
Theoremom2uzrani 12751* Range of  G (see om2uz0i 12746). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   =>    |- 
 ran  G  =  ( ZZ>=
 `  C )
 
Theoremom2uzf1oi 12752*  G (see om2uz0i 12746) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   =>    |-  G : om -1-1-onto-> ( ZZ>= `  C )
 
Theoremom2uzisoi 12753*  G (see om2uz0i 12746) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   =>    |-  G  Isom  _E  ,  <  ( om ,  ( ZZ>= `  C ) )
 
Theoremom2uzoi 12754* An alternative definition of  G in terms of df-oi 8415. (Contributed by Mario Carneiro, 2-Jun-2015.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   =>    |-  G  = OrdIso (  <  ,  ( ZZ>= `  C )
 )
 
Theoremom2uzrdg 12755* A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function  F ( x ,  y ) and initial value  A. Normally  F is a function on the partition, and  A is a member of the partition. See also comment in om2uz0i 12746. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   &    |-  A  e.  _V   &    |-  R  =  ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om )   =>    |-  ( B  e.  om  ->  ( R `  B )  =  <. ( G `
  B ) ,  ( 2nd `  ( R `  B ) )
 >. )
 
Theoremuzrdglem 12756* A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   &    |-  A  e.  _V   &    |-  R  =  ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om )   =>    |-  ( B  e.  ( ZZ>=
 `  C )  ->  <. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  e.  ran  R )
 
Theoremuzrdgfni 12757* The recursive definition generator on upper integers is a function. See comment in om2uzrdg 12755. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 4-May-2015.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   &    |-  A  e.  _V   &    |-  R  =  ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om )   &    |-  S  =  ran  R   =>    |-  S  Fn  ( ZZ>= `  C )
 
Theoremuzrdg0i 12758* Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 12755. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   &    |-  A  e.  _V   &    |-  R  =  ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om )   &    |-  S  =  ran  R   =>    |-  ( S `  C )  =  A
 
Theoremuzrdgsuci 12759* Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg 12755. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  C  e.  ZZ   &    |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )   &    |-  A  e.  _V   &    |-  R  =  ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om )   &    |-  S  =  ran  R   =>    |-  ( B  e.  ( ZZ>=
 `  C )  ->  ( S `  ( B  +  1 ) )  =  ( B F ( S `  B ) ) )
 
Theoremltweuz 12760  < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
 |- 
 <  We  ( ZZ>= `  A )
 
Theoremltwenn 12761 Less than well-orders the naturals. (Contributed by Scott Fenton, 6-Aug-2013.)
 |- 
 <  We  NN
 
Theoremltwefz 12762 Less than well-orders a set of finite integers. (Contributed by Scott Fenton, 8-Aug-2013.)
 |- 
 <  We  ( M ... N )
 
Theoremuzenom 12763 An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  Z  ~~  om )
 
Theoremuzinf 12764 An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  -.  Z  e.  Fin )
 
Theoremnnnfi 12765 The set of positive integers is infinite. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |- 
 -.  NN  e.  Fin
 
Theoremuzrdgxfr 12766* Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.)
 |-  G  =  ( rec ( ( x  e. 
 _V  |->  ( x  +  1 ) ) ,  A )  |`  om )   &    |-  H  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  B )  |`  om )   &    |-  A  e.  ZZ   &    |-  B  e.  ZZ   =>    |-  ( N  e.  om  ->  ( G `  N )  =  ( ( H `  N )  +  ( A  -  B ) ) )
 
Theoremfzennn 12767 The cardinality of a finite set of sequential integers. (See om2uz0i 12746 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.)
 |-  G  =  ( rec ( ( x  e. 
 _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )   =>    |-  ( N  e.  NN0  ->  (
 1 ... N )  ~~  ( `' G `  N ) )
 
Theoremfzen2 12768 The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.)
 |-  G  =  ( rec ( ( x  e. 
 _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )   =>    |-  ( N  e.  ( ZZ>= `  M )  ->  ( M
 ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
 
Theoremcardfz 12769 The cardinality of a finite set of sequential integers. (See om2uz0i 12746 for a description of the hypothesis.) (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |-  G  =  ( rec ( ( x  e. 
 _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )   =>    |-  ( N  e.  NN0  ->  ( card `  ( 1 ...
 N ) )  =  ( `' G `  N ) )
 
Theoremhashgf1o 12770  G maps  om one-to-one onto  NN0. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  G  =  ( rec ( ( x  e. 
 _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )   =>    |-  G : om
 -1-1-onto-> NN0
 
Theoremfzfi 12771 A finite interval of integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
 |-  ( M ... N )  e.  Fin
 
Theoremfzfid 12772 Commonly used special case of fzfi 12771. (Contributed by Mario Carneiro, 25-May-2014.)
 |-  ( ph  ->  ( M ... N )  e. 
 Fin )
 
Theoremfzofi 12773 Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( M..^ N )  e.  Fin
 
Theoremfsequb 12774* The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
 |-  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  E. x  e.  RR  A. k  e.  ( M
 ... N ) ( F `  k )  <  x )
 
Theoremfsequb2 12775* The values of a finite real sequence have an upper bound. (Contributed by NM, 20-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
 |-  ( F : ( M ... N ) --> RR  ->  E. x  e.  RR  A. y  e. 
 ran  F  y  <_  x )
 
Theoremfseqsupcl 12776 The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  F : ( M
 ... N ) --> RR )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
 
Theoremfseqsupubi 12777 The values of a finite real sequence are bounded by their supremum. (Contributed by NM, 20-Sep-2005.)
 |-  ( ( K  e.  ( M ... N ) 
 /\  F : ( M ... N ) --> RR )  ->  ( F `  K )  <_  sup ( ran  F ,  RR ,  <  ) )
 
Theoremnn0ennn 12778 The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
 |- 
 NN0  ~~  NN
 
Theoremnnenom 12779 The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |- 
 NN  ~~  om
 
Theoremnnct 12780  NN is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
 |- 
 NN  ~<_  om
 
Theoremuzindi 12781* Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  T  e.  ( ZZ>= `  L ) )   &    |-  ( ( ph  /\  R  e.  ( L
 ... T )  /\  A. y ( S  e.  ( L..^ R )  ->  ch ) )  ->  ps )   &    |-  ( x  =  y  ->  ( ps  <->  ch ) )   &    |-  ( x  =  A  ->  ( ps  <->  th ) )   &    |-  ( x  =  y  ->  R  =  S )   &    |-  ( x  =  A  ->  R  =  T )   =>    |-  ( ph  ->  th )
 
Theoremaxdc4uzlem 12782* Lemma for axdc4uz 12783. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.)
 |-  M  e.  ZZ   &    |-  Z  =  ( ZZ>= `  M )   &    |-  A  e.  _V   &    |-  G  =  ( rec ( ( y  e.  _V  |->  ( y  +  1 ) ) ,  M )  |`  om )   &    |-  H  =  ( n  e.  om ,  x  e.  A  |->  ( ( G `  n ) F x ) )   =>    |-  ( ( C  e.  A  /\  F : ( Z  X.  A ) --> ( ~P A  \  { (/) } ) ) 
 ->  E. g ( g : Z --> A  /\  ( g `  M )  =  C  /\  A. k  e.  Z  ( g `  ( k  +  1 ) )  e.  ( k F ( g `  k
 ) ) ) )
 
Theoremaxdc4uz 12783* A version of axdc4 9278 that works on an upper set of integers instead of  om. (Contributed by Mario Carneiro, 8-Jan-2014.)
 |-  M  e.  ZZ   &    |-  Z  =  ( ZZ>= `  M )   =>    |-  (
 ( A  e.  V  /\  C  e.  A  /\  F : ( Z  X.  A ) --> ( ~P A  \  { (/) } )
 )  ->  E. g
 ( g : Z --> A  /\  ( g `  M )  =  C  /\  A. k  e.  Z  ( g `  (
 k  +  1 ) )  e.  ( k F ( g `  k ) ) ) )
 
Theoremssnn0fi 12784* A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.)
 |-  ( S  C_  NN0  ->  ( S  e.  Fin  <->  E. s  e.  NN0  A. x  e.  NN0  (
 s  <  x  ->  x 
 e/  S ) ) )
 
Theoremrabssnn0fi 12785* A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.)
 |-  ( { x  e. 
 NN0  |  ph }  e.  Fin  <->  E. s  e.  NN0  A. x  e.  NN0  ( s  < 
 x  ->  -.  ph )
 )
 
5.6.4  Strong induction over upper sets of integers
 
Theoremuzsinds 12786* Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  ( ZZ>= `  M )  ->  ( A. y  e.  ( M ... ( x  -  1
 ) ) ps  ->  ph ) )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ch )
 
Theoremnnsinds 12787* Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  NN  ->  (
 A. y  e.  (
 1 ... ( x  -  1 ) ) ps 
 ->  ph ) )   =>    |-  ( N  e.  NN  ->  ch )
 
Theoremnn0sinds 12788* Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  NN0  ->  ( A. y  e.  (
 0 ... ( x  -  1 ) ) ps 
 ->  ph ) )   =>    |-  ( N  e.  NN0 
 ->  ch )
 
5.6.5  Finitely supported functions over the nonnegative integers
 
Theoremfsuppmapnn0fiublem 12789* Lemma for fsuppmapnn0fiub 12790 and fsuppmapnn0fiubex 12792. (Contributed by AV, 2-Oct-2019.)
 |-  U  =  U_ f  e.  M  ( f supp  Z )   &    |-  S  =  sup ( U ,  RR ,  <  )   =>    |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  ( ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) )  ->  S  e.  NN0 ) )
 
Theoremfsuppmapnn0fiub 12790* If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.)
 |-  U  =  U_ f  e.  M  ( f supp  Z )   &    |-  S  =  sup ( U ,  RR ,  <  )   =>    |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  ( ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) )  ->  A. f  e.  M  ( f supp  Z )  C_  ( 0 ...
 S ) ) )
 
Theoremfsuppmapnn0fiubOLD 12791* Obsolete proof of fsuppmapnn0fiub 12790 as of 2-Aug-2021. (Contributed by AV, 2-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  U  =  U_ f  e.  M  ( f supp  Z )   &    |-  S  =  sup ( U ,  RR ,  <  )   =>    |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  ( ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) )  ->  A. f  e.  M  ( f supp  Z )  C_  ( 0 ...
 S ) ) )
 
Theoremfsuppmapnn0fiubex 12792* If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.)
 |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  ( A. f  e.  M  f finSupp  Z  ->  E. m  e.  NN0  A. f  e.  M  ( f supp  Z )  C_  ( 0 ... m ) ) )
 
Theoremfsuppmapnn0fiub0 12793* If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.)
 |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  ( A. f  e.  M  f finSupp  Z  ->  E. m  e.  NN0  A. f  e.  M  A. x  e. 
 NN0  ( m  < 
 x  ->  ( f `  x )  =  Z ) ) )
 
Theoremsuppssfz 12794* Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.)
 |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  F  e.  ( B  ^m  NN0 ) )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A. x  e.  NN0  ( S  <  x  ->  ( F `  x )  =  Z ) )   =>    |-  ( ph  ->  ( F supp  Z )  C_  ( 0 ... S ) )
 
Theoremfsuppmapnn0ub 12795* If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.)
 |-  ( ( F  e.  ( R  ^m  NN0 )  /\  Z  e.  V ) 
 ->  ( F finSupp  Z  ->  E. m  e.  NN0  A. x  e.  NN0  ( m  < 
 x  ->  ( F `  x )  =  Z ) ) )
 
Theoremfsuppmapnn0fz 12796* If a function over the nonnegative integers is finitely supported, then there is an upper bound for a finite set of sequential integers containing the support of the function. (Contributed by AV, 30-Sep-2019.) (Proof shortened by AV, 6-Oct-2019.)
 |-  ( ( F  e.  ( R  ^m  NN0 )  /\  Z  e.  V ) 
 ->  ( F finSupp  Z  ->  E. m  e.  NN0  ( F supp  Z )  C_  (
 0 ... m ) ) )
 
Theoremmptnn0fsupp 12797* A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.)
 |-  ( ph  ->  .0.  e.  V )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  C  e.  B )   &    |-  ( ph  ->  E. s  e.  NN0  A. x  e.  NN0  ( s  <  x  ->  [_ x  /  k ]_ C  =  .0.  )
 )   =>    |-  ( ph  ->  (
 k  e.  NN0  |->  C ) finSupp  .0.  )
 
Theoremmptnn0fsuppd 12798* A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.)
 |-  ( ph  ->  .0.  e.  V )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  C  e.  B )   &    |-  ( k  =  x  ->  C  =  D )   &    |-  ( ph  ->  E. s  e.  NN0  A. x  e.  NN0  ( s  <  x  ->  D  =  .0.  )
 )   =>    |-  ( ph  ->  (
 k  e.  NN0  |->  C ) finSupp  .0.  )
 
Theoremmptnn0fsuppr 12799* A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.)
 |-  ( ph  ->  .0.  e.  V )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  C  e.  B )   &    |-  ( ph  ->  ( k  e.  NN0  |->  C ) finSupp  .0.  )   =>    |-  ( ph  ->  E. s  e.  NN0  A. x  e.  NN0  ( s  <  x  ->  [_ x  /  k ]_ C  =  .0.  )
 )
 
Theoremf13idfv 12800 A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
 |-  A  =  ( 0
 ... 2 )   =>    |-  ( F : A -1-1-> B  <->  ( F : A
 --> B  /\  ( ( F `  0 )  =/=  ( F `  1 )  /\  ( F `
  0 )  =/=  ( F `  2
 )  /\  ( F `  1 )  =/=  ( F `  2 ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >