MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpinq Structured version   Visualization version   Unicode version

Theorem ordpinq 9765
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpinq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )

Proof of Theorem ordpinq
StepHypRef Expression
1 brinxp 5181 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <pQ  B  <->  A (  <pQ  i^i  ( Q.  X.  Q. ) ) B ) )
2 df-ltnq 9740 . . . 4  |-  <Q  =  (  <pQ  i^i  ( Q.  X.  Q. ) )
32breqi 4659 . . 3  |-  ( A 
<Q  B  <->  A (  <pQ  i^i  ( Q.  X.  Q. ) ) B )
41, 3syl6bbr 278 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <pQ  B  <->  A  <Q  B ) )
5 relxp 5227 . . . . 5  |-  Rel  ( N.  X.  N. )
6 elpqn 9747 . . . . 5  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
7 1st2nd 7214 . . . . 5  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
85, 6, 7sylancr 695 . . . 4  |-  ( A  e.  Q.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
9 elpqn 9747 . . . . 5  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
10 1st2nd 7214 . . . . 5  |-  ( ( Rel  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
115, 9, 10sylancr 695 . . . 4  |-  ( B  e.  Q.  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
128, 11breqan12d 4669 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <pQ  B  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  <pQ  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
)
13 ordpipq 9764 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  <pQ  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) ) )
1412, 13syl6bb 276 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <pQ  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
154, 14bitr3d 270 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573   <.cop 4183   class class class wbr 4653    X. cxp 5112   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   N.cnpi 9666    .N cmi 9668    <N clti 9669    <pQ cltpq 9672   Q.cnq 9674    <Q cltq 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-omul 7565  df-ni 9694  df-mi 9696  df-lti 9697  df-ltpq 9732  df-nq 9734  df-ltnq 9740
This theorem is referenced by:  ltsonq  9791  lterpq  9792  ltanq  9793  ltmnq  9794  ltexnq  9797  archnq  9802
  Copyright terms: Public domain W3C validator