| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordpipq | Structured version Visualization version Unicode version | ||
| Description: Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ordpipq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 4932 |
. . 3
| |
| 2 | opex 4932 |
. . 3
| |
| 3 | eleq1 2689 |
. . . . . 6
| |
| 4 | 3 | anbi1d 741 |
. . . . 5
|
| 5 | 4 | anbi1d 741 |
. . . 4
|
| 6 | fveq2 6191 |
. . . . . . . 8
| |
| 7 | opelxp 5146 |
. . . . . . . . . 10
| |
| 8 | op1stg 7180 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | sylbi 207 |
. . . . . . . . 9
|
| 10 | 9 | adantr 481 |
. . . . . . . 8
|
| 11 | 6, 10 | sylan9eq 2676 |
. . . . . . 7
|
| 12 | 11 | oveq1d 6665 |
. . . . . 6
|
| 13 | fveq2 6191 |
. . . . . . . 8
| |
| 14 | op2ndg 7181 |
. . . . . . . . . 10
| |
| 15 | 7, 14 | sylbi 207 |
. . . . . . . . 9
|
| 16 | 15 | adantr 481 |
. . . . . . . 8
|
| 17 | 13, 16 | sylan9eq 2676 |
. . . . . . 7
|
| 18 | 17 | oveq2d 6666 |
. . . . . 6
|
| 19 | 12, 18 | breq12d 4666 |
. . . . 5
|
| 20 | 19 | pm5.32da 673 |
. . . 4
|
| 21 | 5, 20 | bitrd 268 |
. . 3
|
| 22 | eleq1 2689 |
. . . . . 6
| |
| 23 | 22 | anbi2d 740 |
. . . . 5
|
| 24 | 23 | anbi1d 741 |
. . . 4
|
| 25 | fveq2 6191 |
. . . . . . . 8
| |
| 26 | opelxp 5146 |
. . . . . . . . . 10
| |
| 27 | op2ndg 7181 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | sylbi 207 |
. . . . . . . . 9
|
| 29 | 28 | adantl 482 |
. . . . . . . 8
|
| 30 | 25, 29 | sylan9eq 2676 |
. . . . . . 7
|
| 31 | 30 | oveq2d 6666 |
. . . . . 6
|
| 32 | fveq2 6191 |
. . . . . . . 8
| |
| 33 | op1stg 7180 |
. . . . . . . . . 10
| |
| 34 | 26, 33 | sylbi 207 |
. . . . . . . . 9
|
| 35 | 34 | adantl 482 |
. . . . . . . 8
|
| 36 | 32, 35 | sylan9eq 2676 |
. . . . . . 7
|
| 37 | 36 | oveq1d 6665 |
. . . . . 6
|
| 38 | 31, 37 | breq12d 4666 |
. . . . 5
|
| 39 | 38 | pm5.32da 673 |
. . . 4
|
| 40 | 24, 39 | bitrd 268 |
. . 3
|
| 41 | df-ltpq 9732 |
. . 3
| |
| 42 | 1, 2, 21, 40, 41 | brab 4998 |
. 2
|
| 43 | simpr 477 |
. . 3
| |
| 44 | ltrelpi 9711 |
. . . . . 6
| |
| 45 | 44 | brel 5168 |
. . . . 5
|
| 46 | dmmulpi 9713 |
. . . . . . 7
| |
| 47 | 0npi 9704 |
. . . . . . 7
| |
| 48 | 46, 47 | ndmovrcl 6820 |
. . . . . 6
|
| 49 | 46, 47 | ndmovrcl 6820 |
. . . . . 6
|
| 50 | 48, 49 | anim12i 590 |
. . . . 5
|
| 51 | opelxpi 5148 |
. . . . . . 7
| |
| 52 | 51 | ad2ant2rl 785 |
. . . . . 6
|
| 53 | simprl 794 |
. . . . . . 7
| |
| 54 | simplr 792 |
. . . . . . 7
| |
| 55 | opelxpi 5148 |
. . . . . . 7
| |
| 56 | 53, 54, 55 | syl2anc 693 |
. . . . . 6
|
| 57 | 52, 56 | jca 554 |
. . . . 5
|
| 58 | 45, 50, 57 | 3syl 18 |
. . . 4
|
| 59 | 58 | ancri 575 |
. . 3
|
| 60 | 43, 59 | impbii 199 |
. 2
|
| 61 | 42, 60 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-omul 7565 df-ni 9694 df-mi 9696 df-lti 9697 df-ltpq 9732 |
| This theorem is referenced by: ordpinq 9765 lterpq 9792 ltanq 9793 ltmnq 9794 1lt2nq 9795 |
| Copyright terms: Public domain | W3C validator |