MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lterpq Structured version   Visualization version   Unicode version

Theorem lterpq 9792
Description: Compatibility of ordering on equivalent fractions. (Contributed by Mario Carneiro, 9-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
lterpq  |-  ( A 
<pQ  B  <->  ( /Q `  A )  <Q  ( /Q `  B ) )

Proof of Theorem lterpq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltpq 9732 . . . 4  |-  <pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
2 opabssxp 5193 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }  C_  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )
31, 2eqsstri 3635 . . 3  |-  <pQ  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
43brel 5168 . 2  |-  ( A 
<pQ  B  ->  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. )
) )
5 ltrelnq 9748 . . . 4  |-  <Q  C_  ( Q.  X.  Q. )
65brel 5168 . . 3  |-  ( ( /Q `  A ) 
<Q  ( /Q `  B
)  ->  ( ( /Q `  A )  e. 
Q.  /\  ( /Q `  B )  e.  Q. ) )
7 elpqn 9747 . . . 4  |-  ( ( /Q `  A )  e.  Q.  ->  ( /Q `  A )  e.  ( N.  X.  N. ) )
8 elpqn 9747 . . . 4  |-  ( ( /Q `  B )  e.  Q.  ->  ( /Q `  B )  e.  ( N.  X.  N. ) )
9 nqerf 9752 . . . . . . 7  |-  /Q :
( N.  X.  N. )
--> Q.
109fdmi 6052 . . . . . 6  |-  dom  /Q  =  ( N.  X.  N. )
11 0nelxp 5143 . . . . . 6  |-  -.  (/)  e.  ( N.  X.  N. )
1210, 11ndmfvrcl 6219 . . . . 5  |-  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  A  e.  ( N.  X.  N. ) )
1310, 11ndmfvrcl 6219 . . . . 5  |-  ( ( /Q `  B )  e.  ( N.  X.  N. )  ->  B  e.  ( N.  X.  N. ) )
1412, 13anim12i 590 . . . 4  |-  ( ( ( /Q `  A
)  e.  ( N. 
X.  N. )  /\  ( /Q `  B )  e.  ( N.  X.  N. ) )  ->  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) ) )
157, 8, 14syl2an 494 . . 3  |-  ( ( ( /Q `  A
)  e.  Q.  /\  ( /Q `  B )  e.  Q. )  -> 
( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) ) )
166, 15syl 17 . 2  |-  ( ( /Q `  A ) 
<Q  ( /Q `  B
)  ->  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. )
) )
17 xp1st 7198 . . . . 5  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
18 xp2nd 7199 . . . . 5  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
19 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
2017, 18, 19syl2an 494 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
21 ltmpi 9726 . . . 4  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N.  ->  ( ( ( 1st `  ( /Q
`  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  <N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) )  <->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  .N  (
( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) ) )  <N  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) ) ) ) )
2220, 21syl 17 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  <N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) )  <->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  .N  (
( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) ) )  <N  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) ) ) ) )
23 nqercl 9753 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( /Q
`  A )  e. 
Q. )
24 nqercl 9753 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( /Q
`  B )  e. 
Q. )
25 ordpinq 9765 . . . 4  |-  ( ( ( /Q `  A
)  e.  Q.  /\  ( /Q `  B )  e.  Q. )  -> 
( ( /Q `  A )  <Q  ( /Q `  B )  <->  ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  <N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) ) ) )
2623, 24, 25syl2an 494 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  <Q  ( /Q `  B )  <->  ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  <N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) ) ) )
27 1st2nd2 7205 . . . . . 6  |-  ( A  e.  ( N.  X.  N. )  ->  A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
28 1st2nd2 7205 . . . . . 6  |-  ( B  e.  ( N.  X.  N. )  ->  B  = 
<. ( 1st `  B
) ,  ( 2nd `  B ) >. )
2927, 28breqan12d 4669 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  <pQ  B  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  <pQ  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
)
30 ordpipq 9764 . . . . 5  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  <pQ  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) ) )
3129, 30syl6bb 276 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  <pQ  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
32 xp1st 7198 . . . . . . 7  |-  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( 1st `  ( /Q `  A
) )  e.  N. )
3323, 7, 323syl 18 . . . . . 6  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  ( /Q `  A
) )  e.  N. )
34 xp2nd 7199 . . . . . . 7  |-  ( ( /Q `  B )  e.  ( N.  X.  N. )  ->  ( 2nd `  ( /Q `  B
) )  e.  N. )
3524, 8, 343syl 18 . . . . . 6  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  ( /Q `  B
) )  e.  N. )
36 mulclpi 9715 . . . . . 6  |-  ( ( ( 1st `  ( /Q `  A ) )  e.  N.  /\  ( 2nd `  ( /Q `  B ) )  e. 
N. )  ->  (
( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  e.  N. )
3733, 35, 36syl2an 494 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  e.  N. )
38 ltmpi 9726 . . . . 5  |-  ( ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  e.  N.  ->  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )  <N 
( ( ( 1st `  ( /Q `  A
) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
3937, 38syl 17 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )  <N 
( ( ( 1st `  ( /Q `  A
) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
40 mulcompi 9718 . . . . . 6  |-  ( ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  A
) )  .N  ( 2nd `  ( /Q `  B ) ) ) )
4140a1i 11 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  A
) )  .N  ( 2nd `  ( /Q `  B ) ) ) ) )
42 nqerrel 9754 . . . . . . . . 9  |-  ( A  e.  ( N.  X.  N. )  ->  A  ~Q  ( /Q `  A ) )
4323, 7syl 17 . . . . . . . . . 10  |-  ( A  e.  ( N.  X.  N. )  ->  ( /Q
`  A )  e.  ( N.  X.  N. ) )
44 enqbreq2 9742 . . . . . . . . . 10  |-  ( ( A  e.  ( N. 
X.  N. )  /\  ( /Q `  A )  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  ( /Q `  A )  <->  ( ( 1st `  A )  .N  ( 2nd `  ( /Q `  A ) ) )  =  ( ( 1st `  ( /Q
`  A ) )  .N  ( 2nd `  A
) ) ) )
4543, 44mpdan 702 . . . . . . . . 9  |-  ( A  e.  ( N.  X.  N. )  ->  ( A  ~Q  ( /Q `  A )  <->  ( ( 1st `  A )  .N  ( 2nd `  ( /Q `  A ) ) )  =  ( ( 1st `  ( /Q
`  A ) )  .N  ( 2nd `  A
) ) ) )
4642, 45mpbid 222 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 1st `  A )  .N  ( 2nd `  ( /Q `  A ) ) )  =  ( ( 1st `  ( /Q
`  A ) )  .N  ( 2nd `  A
) ) )
4746eqcomd 2628 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 1st `  ( /Q
`  A ) )  .N  ( 2nd `  A
) )  =  ( ( 1st `  A
)  .N  ( 2nd `  ( /Q `  A
) ) ) )
48 nqerrel 9754 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  B  ~Q  ( /Q `  B ) )
4924, 8syl 17 . . . . . . . . 9  |-  ( B  e.  ( N.  X.  N. )  ->  ( /Q
`  B )  e.  ( N.  X.  N. ) )
50 enqbreq2 9742 . . . . . . . . 9  |-  ( ( B  e.  ( N. 
X.  N. )  /\  ( /Q `  B )  e.  ( N.  X.  N. ) )  ->  ( B  ~Q  ( /Q `  B )  <->  ( ( 1st `  B )  .N  ( 2nd `  ( /Q `  B ) ) )  =  ( ( 1st `  ( /Q
`  B ) )  .N  ( 2nd `  B
) ) ) )
5149, 50mpdan 702 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  ( B  ~Q  ( /Q `  B )  <->  ( ( 1st `  B )  .N  ( 2nd `  ( /Q `  B ) ) )  =  ( ( 1st `  ( /Q
`  B ) )  .N  ( 2nd `  B
) ) ) )
5248, 51mpbid 222 . . . . . . 7  |-  ( B  e.  ( N.  X.  N. )  ->  ( ( 1st `  B )  .N  ( 2nd `  ( /Q `  B ) ) )  =  ( ( 1st `  ( /Q
`  B ) )  .N  ( 2nd `  B
) ) )
5347, 52oveqan12d 6669 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  ( /Q `  B
) ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  ( /Q `  A ) ) )  .N  ( ( 1st `  ( /Q
`  B ) )  .N  ( 2nd `  B
) ) ) )
54 mulcompi 9718 . . . . . . 7  |-  ( ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) )  =  ( ( ( 1st `  B )  .N  ( 2nd `  A ) )  .N  ( ( 1st `  ( /Q `  A
) )  .N  ( 2nd `  ( /Q `  B ) ) ) )
55 fvex 6201 . . . . . . . 8  |-  ( 1st `  B )  e.  _V
56 fvex 6201 . . . . . . . 8  |-  ( 2nd `  A )  e.  _V
57 fvex 6201 . . . . . . . 8  |-  ( 1st `  ( /Q `  A
) )  e.  _V
58 mulcompi 9718 . . . . . . . 8  |-  ( x  .N  y )  =  ( y  .N  x
)
59 mulasspi 9719 . . . . . . . 8  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
60 fvex 6201 . . . . . . . 8  |-  ( 2nd `  ( /Q `  B
) )  e.  _V
6155, 56, 57, 58, 59, 60caov411 6866 . . . . . . 7  |-  ( ( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) ) )  =  ( ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  ( /Q `  B
) ) ) )
6254, 61eqtri 2644 . . . . . 6  |-  ( ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) )  =  ( ( ( 1st `  ( /Q `  A
) )  .N  ( 2nd `  A ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  ( /Q `  B ) ) ) )
63 mulcompi 9718 . . . . . . 7  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) ) )  =  ( ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )
64 fvex 6201 . . . . . . . 8  |-  ( 1st `  ( /Q `  B
) )  e.  _V
65 fvex 6201 . . . . . . . 8  |-  ( 2nd `  ( /Q `  A
) )  e.  _V
66 fvex 6201 . . . . . . . 8  |-  ( 1st `  A )  e.  _V
67 fvex 6201 . . . . . . . 8  |-  ( 2nd `  B )  e.  _V
6864, 65, 66, 58, 59, 67caov411 6866 . . . . . . 7  |-  ( ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B
) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  ( /Q `  A ) ) )  .N  ( ( 1st `  ( /Q `  B
) )  .N  ( 2nd `  B ) ) )
6963, 68eqtri 2644 . . . . . 6  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) ) )  =  ( ( ( 1st `  A
)  .N  ( 2nd `  ( /Q `  A
) ) )  .N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  B
) ) )
7053, 62, 693eqtr4g 2681 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  B
) )  .N  ( 2nd `  ( /Q `  A ) ) ) ) )
7141, 70breq12d 4666 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( ( ( 1st `  ( /Q `  A
) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  <N  ( (
( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) )  <->  ( (
( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) ) )  <N  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) ) ) ) )
7231, 39, 713bitrd 294 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  <pQ  B  <->  ( (
( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  A ) )  .N  ( 2nd `  ( /Q `  B ) ) ) )  <N  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  ( /Q `  B ) )  .N  ( 2nd `  ( /Q `  A ) ) ) ) ) )
7322, 26, 723bitr4rd 301 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  <pQ  B  <->  ( /Q `  A )  <Q  ( /Q `  B ) ) )
744, 16, 73pm5.21nii 368 1  |-  ( A 
<pQ  B  <->  ( /Q `  A )  <Q  ( /Q `  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   {copab 4712    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   N.cnpi 9666    .N cmi 9668    <N clti 9669    <pQ cltpq 9672    ~Q ceq 9673   Q.cnq 9674   /Qcerq 9676    <Q cltq 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-1nq 9738  df-ltnq 9740
This theorem is referenced by:  ltanq  9793  ltmnq  9794  1lt2nq  9795
  Copyright terms: Public domain W3C validator