Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnsrplycl Structured version   Visualization version   Unicode version

Theorem cnsrplycl 37737
Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
cnsrplycl.s  |-  ( ph  ->  S  e.  (SubRing ` fld ) )
cnsrplycl.p  |-  ( ph  ->  P  e.  (Poly `  C ) )
cnsrplycl.x  |-  ( ph  ->  X  e.  S )
cnsrplycl.c  |-  ( ph  ->  C  C_  S )
Assertion
Ref Expression
cnsrplycl  |-  ( ph  ->  ( P `  X
)  e.  S )

Proof of Theorem cnsrplycl
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 cnsrplycl.c . . . . 5  |-  ( ph  ->  C  C_  S )
2 cnsrplycl.s . . . . . 6  |-  ( ph  ->  S  e.  (SubRing ` fld ) )
3 cnfldbas 19750 . . . . . . 7  |-  CC  =  ( Base ` fld )
43subrgss 18781 . . . . . 6  |-  ( S  e.  (SubRing ` fld )  ->  S  C_  CC )
52, 4syl 17 . . . . 5  |-  ( ph  ->  S  C_  CC )
6 plyss 23955 . . . . 5  |-  ( ( C  C_  S  /\  S  C_  CC )  -> 
(Poly `  C )  C_  (Poly `  S )
)
71, 5, 6syl2anc 693 . . . 4  |-  ( ph  ->  (Poly `  C )  C_  (Poly `  S )
)
8 cnsrplycl.p . . . 4  |-  ( ph  ->  P  e.  (Poly `  C ) )
97, 8sseldd 3604 . . 3  |-  ( ph  ->  P  e.  (Poly `  S ) )
10 cnsrplycl.x . . . 4  |-  ( ph  ->  X  e.  S )
115, 10sseldd 3604 . . 3  |-  ( ph  ->  X  e.  CC )
12 eqid 2622 . . . 4  |-  (coeff `  P )  =  (coeff `  P )
13 eqid 2622 . . . 4  |-  (deg `  P )  =  (deg
`  P )
1412, 13coeid2 23995 . . 3  |-  ( ( P  e.  (Poly `  S )  /\  X  e.  CC )  ->  ( P `  X )  =  sum_ k  e.  ( 0 ... (deg `  P ) ) ( ( (coeff `  P
) `  k )  x.  ( X ^ k
) ) )
159, 11, 14syl2anc 693 . 2  |-  ( ph  ->  ( P `  X
)  =  sum_ k  e.  ( 0 ... (deg `  P ) ) ( ( (coeff `  P
) `  k )  x.  ( X ^ k
) ) )
16 fzfid 12772 . . 3  |-  ( ph  ->  ( 0 ... (deg `  P ) )  e. 
Fin )
172adantr 481 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... (deg `  P ) ) )  ->  S  e.  (SubRing ` fld ) )
18 subrgsubg 18786 . . . . . . . 8  |-  ( S  e.  (SubRing ` fld )  ->  S  e.  (SubGrp ` fld ) )
19 cnfld0 19770 . . . . . . . . 9  |-  0  =  ( 0g ` fld )
2019subg0cl 17602 . . . . . . . 8  |-  ( S  e.  (SubGrp ` fld )  ->  0  e.  S )
212, 18, 203syl 18 . . . . . . 7  |-  ( ph  ->  0  e.  S )
2212coef2 23987 . . . . . . 7  |-  ( ( P  e.  (Poly `  S )  /\  0  e.  S )  ->  (coeff `  P ) : NN0 --> S )
239, 21, 22syl2anc 693 . . . . . 6  |-  ( ph  ->  (coeff `  P ) : NN0 --> S )
2423adantr 481 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... (deg `  P ) ) )  ->  (coeff `  P
) : NN0 --> S )
25 elfznn0 12433 . . . . . 6  |-  ( k  e.  ( 0 ... (deg `  P )
)  ->  k  e.  NN0 )
2625adantl 482 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... (deg `  P ) ) )  ->  k  e.  NN0 )
2724, 26ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... (deg `  P ) ) )  ->  ( (coeff `  P ) `  k
)  e.  S )
2810adantr 481 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... (deg `  P ) ) )  ->  X  e.  S
)
2917, 28, 26cnsrexpcl 37735 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... (deg `  P ) ) )  ->  ( X ^
k )  e.  S
)
30 cnfldmul 19752 . . . . 5  |-  x.  =  ( .r ` fld )
3130subrgmcl 18792 . . . 4  |-  ( ( S  e.  (SubRing ` fld )  /\  (
(coeff `  P ) `  k )  e.  S  /\  ( X ^ k
)  e.  S )  ->  ( ( (coeff `  P ) `  k
)  x.  ( X ^ k ) )  e.  S )
3217, 27, 29, 31syl3anc 1326 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... (deg `  P ) ) )  ->  ( ( (coeff `  P ) `  k
)  x.  ( X ^ k ) )  e.  S )
332, 16, 32fsumcnsrcl 37736 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... (deg `  P ) ) ( ( (coeff `  P
) `  k )  x.  ( X ^ k
) )  e.  S
)
3415, 33eqeltrd 2701 1  |-  ( ph  ->  ( P `  X
)  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941   NN0cn0 11292   ...cfz 12326   ^cexp 12860   sum_csu 14416  SubGrpcsubg 17588  SubRingcsubrg 18776  ℂfldccnfld 19746  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-cnfld 19747  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  rngunsnply  37743
  Copyright terms: Public domain W3C validator