MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1wunlim Structured version   Visualization version   Unicode version

Theorem r1wunlim 9559
Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1wunlim  |-  ( A  e.  V  ->  (
( R1 `  A
)  e. WUni  <->  Lim  A ) )

Proof of Theorem r1wunlim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  ( R1 `  A )  e. WUni
)
21wun0 9540 . . . . . 6  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  (/)  e.  ( R1 `  A ) )
3 elfvdm 6220 . . . . . 6  |-  ( (/)  e.  ( R1 `  A
)  ->  A  e.  dom  R1 )
42, 3syl 17 . . . . 5  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  A  e.  dom  R1 )
5 r1fnon 8630 . . . . . 6  |-  R1  Fn  On
6 fndm 5990 . . . . . 6  |-  ( R1  Fn  On  ->  dom  R1  =  On )
75, 6ax-mp 5 . . . . 5  |-  dom  R1  =  On
84, 7syl6eleq 2711 . . . 4  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  A  e.  On )
9 eloni 5733 . . . 4  |-  ( A  e.  On  ->  Ord  A )
108, 9syl 17 . . 3  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  Ord  A )
11 n0i 3920 . . . . . 6  |-  ( (/)  e.  ( R1 `  A
)  ->  -.  ( R1 `  A )  =  (/) )
122, 11syl 17 . . . . 5  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  ( R1 `  A )  =  (/) )
13 fveq2 6191 . . . . . 6  |-  ( A  =  (/)  ->  ( R1
`  A )  =  ( R1 `  (/) ) )
14 r10 8631 . . . . . 6  |-  ( R1
`  (/) )  =  (/)
1513, 14syl6eq 2672 . . . . 5  |-  ( A  =  (/)  ->  ( R1
`  A )  =  (/) )
1612, 15nsyl 135 . . . 4  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  A  =  (/) )
17 suceloni 7013 . . . . . . . 8  |-  ( A  e.  On  ->  suc  A  e.  On )
188, 17syl 17 . . . . . . 7  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  suc  A  e.  On )
19 sucidg 5803 . . . . . . . 8  |-  ( A  e.  On  ->  A  e.  suc  A )
208, 19syl 17 . . . . . . 7  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  A  e.  suc  A )
21 r1ord 8643 . . . . . . 7  |-  ( suc 
A  e.  On  ->  ( A  e.  suc  A  ->  ( R1 `  A
)  e.  ( R1
`  suc  A )
) )
2218, 20, 21sylc 65 . . . . . 6  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  ( R1 `  A )  e.  ( R1 `  suc  A ) )
23 r1elwf 8659 . . . . . 6  |-  ( ( R1 `  A )  e.  ( R1 `  suc  A )  ->  ( R1 `  A )  e. 
U. ( R1 " On ) )
24 wfelirr 8688 . . . . . 6  |-  ( ( R1 `  A )  e.  U. ( R1
" On )  ->  -.  ( R1 `  A
)  e.  ( R1
`  A ) )
2522, 23, 243syl 18 . . . . 5  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  ( R1 `  A )  e.  ( R1 `  A ) )
26 simprr 796 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  A  =  suc  x )
2726fveq2d 6195 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  A )  =  ( R1 `  suc  x
) )
28 r1suc 8633 . . . . . . . . 9  |-  ( x  e.  On  ->  ( R1 `  suc  x )  =  ~P ( R1
`  x ) )
2928ad2antrl 764 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 ` 
suc  x )  =  ~P ( R1 `  x ) )
3027, 29eqtrd 2656 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  A )  =  ~P ( R1 `  x ) )
31 simplr 792 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  A )  e. WUni )
328adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  A  e.  On )
33 sucidg 5803 . . . . . . . . . . 11  |-  ( x  e.  On  ->  x  e.  suc  x )
3433ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  x  e.  suc  x )
3534, 26eleqtrrd 2704 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  x  e.  A )
36 r1ord 8643 . . . . . . . . 9  |-  ( A  e.  On  ->  (
x  e.  A  -> 
( R1 `  x
)  e.  ( R1
`  A ) ) )
3732, 35, 36sylc 65 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  x )  e.  ( R1 `  A ) )
3831, 37wunpw 9529 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ~P ( R1 `  x )  e.  ( R1 `  A
) )
3930, 38eqeltrd 2701 . . . . . 6  |-  ( ( ( A  e.  V  /\  ( R1 `  A
)  e. WUni )  /\  (
x  e.  On  /\  A  =  suc  x ) )  ->  ( R1 `  A )  e.  ( R1 `  A ) )
4039rexlimdvaa 3032 . . . . 5  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  ( E. x  e.  On  A  =  suc  x  -> 
( R1 `  A
)  e.  ( R1
`  A ) ) )
4125, 40mtod 189 . . . 4  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  E. x  e.  On  A  =  suc  x )
42 ioran 511 . . . 4  |-  ( -.  ( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x )  <-> 
( -.  A  =  (/)  /\  -.  E. x  e.  On  A  =  suc  x ) )
4316, 41, 42sylanbrc 698 . . 3  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  -.  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x ) )
44 dflim3 7047 . . 3  |-  ( Lim 
A  <->  ( Ord  A  /\  -.  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x ) ) )
4510, 43, 44sylanbrc 698 . 2  |-  ( ( A  e.  V  /\  ( R1 `  A )  e. WUni )  ->  Lim  A )
46 r1limwun 9558 . 2  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( R1 `  A )  e. WUni
)
4745, 46impbida 877 1  |-  ( A  e.  V  ->  (
( R1 `  A
)  e. WUni  <->  Lim  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   dom cdm 5114   "cima 5117   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725    Fn wfn 5883   ` cfv 5888   R1cr1 8625  WUnicwun 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628  df-wun 9524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator