MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12r Structured version   Visualization version   Unicode version

Theorem dfac12r 8968
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 8971 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
dfac12r  |-  ( A. x  e.  On  ~P x  e.  dom  card  <->  U. ( R1 " On )  C_  dom  card )

Proof of Theorem dfac12r
Dummy variables  a 
b  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 8656 . . . 4  |-  ( y  e.  U. ( R1
" On )  <->  E. z  e.  On  y  e.  ( R1 `  suc  z
) )
2 harcl 8466 . . . . . . . . 9  |-  (har `  ( R1 `  z ) )  e.  On
3 pweq 4161 . . . . . . . . . . 11  |-  ( x  =  (har `  ( R1 `  z ) )  ->  ~P x  =  ~P (har `  ( R1 `  z ) ) )
43eleq1d 2686 . . . . . . . . . 10  |-  ( x  =  (har `  ( R1 `  z ) )  ->  ( ~P x  e.  dom  card  <->  ~P (har `  ( R1 `  z ) )  e.  dom  card )
)
54rspcv 3305 . . . . . . . . 9  |-  ( (har
`  ( R1 `  z ) )  e.  On  ->  ( A. x  e.  On  ~P x  e.  dom  card  ->  ~P (har `  ( R1 `  z ) )  e. 
dom  card ) )
62, 5ax-mp 5 . . . . . . . 8  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ~P (har `  ( R1 `  z ) )  e. 
dom  card )
7 cardid2 8779 . . . . . . . 8  |-  ( ~P (har `  ( R1 `  z ) )  e. 
dom  card  ->  ( card `  ~P (har `  ( R1 `  z ) ) )  ~~  ~P (har `  ( R1 `  z
) ) )
8 ensym 8005 . . . . . . . 8  |-  ( (
card `  ~P (har `  ( R1 `  z
) ) )  ~~  ~P (har `  ( R1 `  z ) )  ->  ~P (har `  ( R1 `  z ) )  ~~  ( card `  ~P (har `  ( R1 `  z
) ) ) )
9 bren 7964 . . . . . . . . 9  |-  ( ~P (har `  ( R1 `  z ) )  ~~  ( card `  ~P (har `  ( R1 `  z
) ) )  <->  E. f 
f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) ) )
10 simpr 477 . . . . . . . . . . . 12  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  z  e.  On )  ->  z  e.  On )
11 f1of1 6136 . . . . . . . . . . . . . 14  |-  ( f : ~P (har `  ( R1 `  z ) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  ->  f : ~P (har `  ( R1 `  z ) ) -1-1-> (
card `  ~P (har `  ( R1 `  z
) ) ) )
1211adantr 481 . . . . . . . . . . . . 13  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  z  e.  On )  ->  f : ~P (har `  ( R1 `  z ) ) -1-1-> (
card `  ~P (har `  ( R1 `  z
) ) ) )
13 cardon 8770 . . . . . . . . . . . . . 14  |-  ( card `  ~P (har `  ( R1 `  z ) ) )  e.  On
1413onssi 7037 . . . . . . . . . . . . 13  |-  ( card `  ~P (har `  ( R1 `  z ) ) )  C_  On
15 f1ss 6106 . . . . . . . . . . . . 13  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  ( card `  ~P (har `  ( R1 `  z ) ) )  C_  On )  ->  f : ~P (har `  ( R1 `  z
) ) -1-1-> On )
1612, 14, 15sylancl 694 . . . . . . . . . . . 12  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  z  e.  On )  ->  f : ~P (har `  ( R1 `  z ) ) -1-1-> On )
17 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  b  ->  ( rank `  y )  =  ( rank `  b
) )
1817oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  b  ->  ( suc  U. ran  U. ran  x  .o  ( rank `  y
) )  =  ( suc  U. ran  U. ran  x  .o  ( rank `  b ) ) )
19 suceq 5790 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
rank `  y )  =  ( rank `  b
)  ->  suc  ( rank `  y )  =  suc  ( rank `  b )
)
2017, 19syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  b  ->  suc  ( rank `  y )  =  suc  ( rank `  b
) )
2120fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  b  ->  (
x `  suc  ( rank `  y ) )  =  ( x `  suc  ( rank `  b )
) )
22 id 22 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  b  ->  y  =  b )
2321, 22fveq12d 6197 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  b  ->  (
( x `  suc  ( rank `  y )
) `  y )  =  ( ( x `
 suc  ( rank `  b ) ) `  b ) )
2418, 23oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( y  =  b  ->  (
( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) )  =  ( ( suc  U. ran  U.
ran  x  .o  ( rank `  b ) )  +o  ( ( x `
 suc  ( rank `  b ) ) `  b ) ) )
25 imaeq2 5462 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  b  ->  (
( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y )  =  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " b
) )
2625fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( y  =  b  ->  (
f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) )  =  ( f `  (
( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) ) )
2724, 26ifeq12d 4106 . . . . . . . . . . . . . . . 16  |-  ( y  =  b  ->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) )  =  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  b
) )  +o  (
( x `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) ) ) )
2827cbvmptv 4750 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) )  =  ( b  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  b ) )  +o  ( ( x `  suc  ( rank `  b
) ) `  b
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) ) ) )
29 dmeq 5324 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  dom  x  =  dom  a )
3029fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  ( R1 `  dom  x )  =  ( R1 `  dom  a ) )
3129unieqd 4446 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  U. dom  x  =  U. dom  a
)
3229, 31eqeq12d 2637 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  ( dom  x  =  U. dom  x 
<->  dom  a  =  U. dom  a ) )
33 rneq 5351 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  a  ->  ran  x  =  ran  a )
3433unieqd 4446 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  a  ->  U. ran  x  =  U. ran  a
)
3534rneqd 5353 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  a  ->  ran  U.
ran  x  =  ran  U.
ran  a )
3635unieqd 4446 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  a  ->  U. ran  U.
ran  x  =  U. ran  U. ran  a )
37 suceq 5790 . . . . . . . . . . . . . . . . . . . 20  |-  ( U. ran  U. ran  x  = 
U. ran  U. ran  a  ->  suc  U. ran  U. ran  x  =  suc  U. ran  U. ran  a )
3836, 37syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  suc  U.
ran  U. ran  x  =  suc  U. ran  U. ran  a )
3938oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  ( suc  U. ran  U. ran  x  .o  ( rank `  b
) )  =  ( suc  U. ran  U. ran  a  .o  ( rank `  b ) ) )
40 fveq1 6190 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  (
x `  suc  ( rank `  b ) )  =  ( a `  suc  ( rank `  b )
) )
4140fveq1d 6193 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
( x `  suc  ( rank `  b )
) `  b )  =  ( ( a `
 suc  ( rank `  b ) ) `  b ) )
4239, 41oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  (
( suc  U. ran  U. ran  x  .o  ( rank `  b ) )  +o  ( ( x `  suc  ( rank `  b
) ) `  b
) )  =  ( ( suc  U. ran  U.
ran  a  .o  ( rank `  b ) )  +o  ( ( a `
 suc  ( rank `  b ) ) `  b ) ) )
43 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  a  ->  x  =  a )
4443, 31fveq12d 6197 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  a  ->  (
x `  U. dom  x
)  =  ( a `
 U. dom  a
) )
4544rneqd 5353 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  a  ->  ran  ( x `  U. dom  x )  =  ran  ( a `  U. dom  a ) )
46 oieq2 8418 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ran  ( x `  U. dom  x )  =  ran  ( a `  U. dom  a )  -> OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  = OrdIso (  _E  ,  ran  ( a `
 U. dom  a
) ) )
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  a  -> OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  = OrdIso (  _E  ,  ran  ( a `
 U. dom  a
) ) )
4847cnveqd 5298 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  a  ->  `'OrdIso (  _E  ,  ran  (
x `  U. dom  x
) )  =  `'OrdIso (  _E  ,  ran  (
a `  U. dom  a
) ) )
4948, 44coeq12d 5286 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) )  =  ( `'OrdIso (  _E  ,  ran  ( a `
 U. dom  a
) )  o.  (
a `  U. dom  a
) ) )
5049imaeq1d 5465 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b )  =  ( ( `'OrdIso (  _E  ,  ran  ( a `
 U. dom  a
) )  o.  (
a `  U. dom  a
) ) " b
) )
5150fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  (
f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) )  =  ( f `  (
( `'OrdIso (  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) )
5232, 42, 51ifbieq12d 4113 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  b ) )  +o  ( ( x `  suc  ( rank `  b
) ) `  b
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
b ) ) )  =  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b
) )  +o  (
( a `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) )
5330, 52mpteq12dv 4733 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  (
b  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  b )
)  +o  ( ( x `  suc  ( rank `  b ) ) `
 b ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " b
) ) ) )  =  ( b  e.  ( R1 `  dom  a )  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b ) )  +o  ( ( a `
 suc  ( rank `  b ) ) `  b ) ) ,  ( f `  (
( `'OrdIso (  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) )
5428, 53syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( x  =  a  ->  (
y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) )  =  ( b  e.  ( R1 `  dom  a )  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b ) )  +o  ( ( a `
 suc  ( rank `  b ) ) `  b ) ) ,  ( f `  (
( `'OrdIso (  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) )
5554cbvmptv 4750 . . . . . . . . . . . . 13  |-  ( x  e.  _V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) )  =  ( a  e.  _V  |->  ( b  e.  ( R1
`  dom  a )  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b
) )  +o  (
( a `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) )
56 recseq 7470 . . . . . . . . . . . . 13  |-  ( ( x  e.  _V  |->  ( y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) ) )  =  ( a  e.  _V  |->  ( b  e.  ( R1 `  dom  a )  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b ) )  +o  ( ( a `
 suc  ( rank `  b ) ) `  b ) ) ,  ( f `  (
( `'OrdIso (  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) )  -> recs ( ( x  e.  _V  |->  ( y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) ) ) )  = recs (
( a  e.  _V  |->  ( b  e.  ( R1 `  dom  a
)  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b
) )  +o  (
( a `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) ) ) )
5755, 56ax-mp 5 . . . . . . . . . . . 12  |- recs ( ( x  e.  _V  |->  ( y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( f `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) ) ) )  = recs (
( a  e.  _V  |->  ( b  e.  ( R1 `  dom  a
)  |->  if ( dom  a  =  U. dom  a ,  ( ( suc  U. ran  U. ran  a  .o  ( rank `  b
) )  +o  (
( a `  suc  ( rank `  b )
) `  b )
) ,  ( f `
 ( ( `'OrdIso
(  _E  ,  ran  ( a `  U. dom  a ) )  o.  ( a `  U. dom  a ) ) "
b ) ) ) ) ) )
5810, 16, 57dfac12lem3 8967 . . . . . . . . . . 11  |-  ( ( f : ~P (har `  ( R1 `  z
) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  /\  z  e.  On )  ->  ( R1 `  z )  e.  dom  card )
5958ex 450 . . . . . . . . . 10  |-  ( f : ~P (har `  ( R1 `  z ) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  ->  ( z  e.  On  ->  ( R1 `  z )  e.  dom  card ) )
6059exlimiv 1858 . . . . . . . . 9  |-  ( E. f  f : ~P (har `  ( R1 `  z ) ) -1-1-onto-> ( card `  ~P (har `  ( R1 `  z ) ) )  ->  ( z  e.  On  ->  ( R1 `  z )  e.  dom  card ) )
619, 60sylbi 207 . . . . . . . 8  |-  ( ~P (har `  ( R1 `  z ) )  ~~  ( card `  ~P (har `  ( R1 `  z
) ) )  -> 
( z  e.  On  ->  ( R1 `  z
)  e.  dom  card ) )
626, 7, 8, 614syl 19 . . . . . . 7  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ( z  e.  On  ->  ( R1 `  z )  e.  dom  card )
)
6362imp 445 . . . . . 6  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( R1 `  z )  e.  dom  card )
64 r1suc 8633 . . . . . . . . 9  |-  ( z  e.  On  ->  ( R1 `  suc  z )  =  ~P ( R1
`  z ) )
6564adantl 482 . . . . . . . 8  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( R1 `  suc  z )  =  ~P ( R1 `  z ) )
6665eleq2d 2687 . . . . . . 7  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( y  e.  ( R1 `  suc  z )  <->  y  e.  ~P ( R1 `  z
) ) )
67 elpwi 4168 . . . . . . 7  |-  ( y  e.  ~P ( R1
`  z )  -> 
y  C_  ( R1 `  z ) )
6866, 67syl6bi 243 . . . . . 6  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( y  e.  ( R1 `  suc  z )  ->  y  C_  ( R1 `  z
) ) )
69 ssnum 8862 . . . . . 6  |-  ( ( ( R1 `  z
)  e.  dom  card  /\  y  C_  ( R1 `  z ) )  -> 
y  e.  dom  card )
7063, 68, 69syl6an 568 . . . . 5  |-  ( ( A. x  e.  On  ~P x  e.  dom  card  /\  z  e.  On )  ->  ( y  e.  ( R1 `  suc  z )  ->  y  e.  dom  card ) )
7170rexlimdva 3031 . . . 4  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ( E. z  e.  On  y  e.  ( R1 ` 
suc  z )  -> 
y  e.  dom  card ) )
721, 71syl5bi 232 . . 3  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ( y  e.  U. ( R1 " On )  -> 
y  e.  dom  card ) )
7372ssrdv 3609 . 2  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  U. ( R1 " On )  C_  dom  card )
74 onwf 8693 . . . . . 6  |-  On  C_  U. ( R1 " On )
7574sseli 3599 . . . . 5  |-  ( x  e.  On  ->  x  e.  U. ( R1 " On ) )
76 pwwf 8670 . . . . 5  |-  ( x  e.  U. ( R1
" On )  <->  ~P x  e.  U. ( R1 " On ) )
7775, 76sylib 208 . . . 4  |-  ( x  e.  On  ->  ~P x  e.  U. ( R1 " On ) )
78 ssel 3597 . . . 4  |-  ( U. ( R1 " On ) 
C_  dom  card  ->  ( ~P x  e.  U. ( R1 " On )  ->  ~P x  e.  dom  card ) )
7977, 78syl5 34 . . 3  |-  ( U. ( R1 " On ) 
C_  dom  card  ->  (
x  e.  On  ->  ~P x  e.  dom  card ) )
8079ralrimiv 2965 . 2  |-  ( U. ( R1 " On ) 
C_  dom  card  ->  A. x  e.  On  ~P x  e. 
dom  card )
8173, 80impbii 199 1  |-  ( A. x  e.  On  ~P x  e.  dom  card  <->  U. ( R1 " On )  C_  dom  card )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ifcif 4086   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    _E cep 5028   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Oncon0 5723   suc csuc 5725   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650  recscrecs 7467    +o coa 7557    .o comu 7558    ~~ cen 7952  OrdIsocoi 8414  harchar 8461   R1cr1 8625   rankcrnk 8626   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-er 7742  df-en 7956  df-dom 7957  df-oi 8415  df-har 8463  df-r1 8627  df-rank 8628  df-card 8765
This theorem is referenced by:  dfac12a  8970
  Copyright terms: Public domain W3C validator