Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinrn Structured version   Visualization version   Unicode version

Theorem reprinrn 30696
Description: Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a  |-  ( ph  ->  A  C_  NN )
reprval.m  |-  ( ph  ->  M  e.  ZZ )
reprval.s  |-  ( ph  ->  S  e.  NN0 )
Assertion
Ref Expression
reprinrn  |-  ( ph  ->  ( c  e.  ( ( A  i^i  B
) (repr `  S
) M )  <->  ( c  e.  ( A (repr `  S ) M )  /\  ran  c  C_  B ) ) )
Distinct variable groups:    A, c    M, c    S, c    ph, c    B, c

Proof of Theorem reprinrn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fin 6085 . . . . 5  |-  ( c : ( 0..^ S ) --> ( A  i^i  B )  <->  ( c : ( 0..^ S ) --> A  /\  c : ( 0..^ S ) --> B ) )
2 df-f 5892 . . . . . . 7  |-  ( c : ( 0..^ S ) --> B  <->  ( c  Fn  ( 0..^ S )  /\  ran  c  C_  B ) )
3 ffn 6045 . . . . . . . . . 10  |-  ( c : ( 0..^ S ) --> A  ->  c  Fn  ( 0..^ S ) )
43adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  c :
( 0..^ S ) --> A )  ->  c  Fn  ( 0..^ S ) )
54biantrurd 529 . . . . . . . 8  |-  ( (
ph  /\  c :
( 0..^ S ) --> A )  ->  ( ran  c  C_  B  <->  ( c  Fn  ( 0..^ S )  /\  ran  c  C_  B ) ) )
65bicomd 213 . . . . . . 7  |-  ( (
ph  /\  c :
( 0..^ S ) --> A )  ->  (
( c  Fn  (
0..^ S )  /\  ran  c  C_  B )  <->  ran  c  C_  B ) )
72, 6syl5bb 272 . . . . . 6  |-  ( (
ph  /\  c :
( 0..^ S ) --> A )  ->  (
c : ( 0..^ S ) --> B  <->  ran  c  C_  B ) )
87pm5.32da 673 . . . . 5  |-  ( ph  ->  ( ( c : ( 0..^ S ) --> A  /\  c : ( 0..^ S ) --> B )  <->  ( c : ( 0..^ S ) --> A  /\  ran  c  C_  B ) ) )
91, 8syl5bb 272 . . . 4  |-  ( ph  ->  ( c : ( 0..^ S ) --> ( A  i^i  B )  <-> 
( c : ( 0..^ S ) --> A  /\  ran  c  C_  B ) ) )
10 nnex 11026 . . . . . . . 8  |-  NN  e.  _V
1110a1i 11 . . . . . . 7  |-  ( ph  ->  NN  e.  _V )
12 reprval.a . . . . . . 7  |-  ( ph  ->  A  C_  NN )
1311, 12ssexd 4805 . . . . . 6  |-  ( ph  ->  A  e.  _V )
14 inex1g 4801 . . . . . 6  |-  ( A  e.  _V  ->  ( A  i^i  B )  e. 
_V )
1513, 14syl 17 . . . . 5  |-  ( ph  ->  ( A  i^i  B
)  e.  _V )
16 ovex 6678 . . . . 5  |-  ( 0..^ S )  e.  _V
17 elmapg 7870 . . . . 5  |-  ( ( ( A  i^i  B
)  e.  _V  /\  ( 0..^ S )  e. 
_V )  ->  (
c  e.  ( ( A  i^i  B )  ^m  ( 0..^ S ) )  <->  c :
( 0..^ S ) --> ( A  i^i  B
) ) )
1815, 16, 17sylancl 694 . . . 4  |-  ( ph  ->  ( c  e.  ( ( A  i^i  B
)  ^m  ( 0..^ S ) )  <->  c :
( 0..^ S ) --> ( A  i^i  B
) ) )
19 elmapg 7870 . . . . . 6  |-  ( ( A  e.  _V  /\  ( 0..^ S )  e. 
_V )  ->  (
c  e.  ( A  ^m  ( 0..^ S ) )  <->  c :
( 0..^ S ) --> A ) )
2013, 16, 19sylancl 694 . . . . 5  |-  ( ph  ->  ( c  e.  ( A  ^m  ( 0..^ S ) )  <->  c :
( 0..^ S ) --> A ) )
2120anbi1d 741 . . . 4  |-  ( ph  ->  ( ( c  e.  ( A  ^m  (
0..^ S ) )  /\  ran  c  C_  B )  <->  ( c : ( 0..^ S ) --> A  /\  ran  c  C_  B ) ) )
229, 18, 213bitr4d 300 . . 3  |-  ( ph  ->  ( c  e.  ( ( A  i^i  B
)  ^m  ( 0..^ S ) )  <->  ( c  e.  ( A  ^m  (
0..^ S ) )  /\  ran  c  C_  B ) ) )
2322anbi1d 741 . 2  |-  ( ph  ->  ( ( c  e.  ( ( A  i^i  B )  ^m  ( 0..^ S ) )  /\  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M )  <->  ( (
c  e.  ( A  ^m  ( 0..^ S ) )  /\  ran  c  C_  B )  /\  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M ) ) )
24 inss1 3833 . . . . . 6  |-  ( A  i^i  B )  C_  A
2524, 12syl5ss 3614 . . . . 5  |-  ( ph  ->  ( A  i^i  B
)  C_  NN )
26 reprval.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
27 reprval.s . . . . 5  |-  ( ph  ->  S  e.  NN0 )
2825, 26, 27reprval 30688 . . . 4  |-  ( ph  ->  ( ( A  i^i  B ) (repr `  S
) M )  =  { c  e.  ( ( A  i^i  B
)  ^m  ( 0..^ S ) )  | 
sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M } )
2928eleq2d 2687 . . 3  |-  ( ph  ->  ( c  e.  ( ( A  i^i  B
) (repr `  S
) M )  <->  c  e.  { c  e.  ( ( A  i^i  B )  ^m  ( 0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M } ) )
30 rabid 3116 . . 3  |-  ( c  e.  { c  e.  ( ( A  i^i  B )  ^m  ( 0..^ S ) )  | 
sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M }  <->  ( c  e.  ( ( A  i^i  B )  ^m  ( 0..^ S ) )  /\  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M ) )
3129, 30syl6bb 276 . 2  |-  ( ph  ->  ( c  e.  ( ( A  i^i  B
) (repr `  S
) M )  <->  ( c  e.  ( ( A  i^i  B )  ^m  ( 0..^ S ) )  /\  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M ) ) )
3212, 26, 27reprval 30688 . . . . . 6  |-  ( ph  ->  ( A (repr `  S ) M )  =  { c  e.  ( A  ^m  (
0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M } )
3332eleq2d 2687 . . . . 5  |-  ( ph  ->  ( c  e.  ( A (repr `  S
) M )  <->  c  e.  { c  e.  ( A  ^m  ( 0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M } ) )
34 rabid 3116 . . . . 5  |-  ( c  e.  { c  e.  ( A  ^m  (
0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M }  <->  ( c  e.  ( A  ^m  (
0..^ S ) )  /\  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M ) )
3533, 34syl6bb 276 . . . 4  |-  ( ph  ->  ( c  e.  ( A (repr `  S
) M )  <->  ( c  e.  ( A  ^m  (
0..^ S ) )  /\  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M ) ) )
3635anbi1d 741 . . 3  |-  ( ph  ->  ( ( c  e.  ( A (repr `  S ) M )  /\  ran  c  C_  B )  <->  ( (
c  e.  ( A  ^m  ( 0..^ S ) )  /\  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M )  /\  ran  c  C_  B ) ) )
37 an32 839 . . 3  |-  ( ( ( c  e.  ( A  ^m  ( 0..^ S ) )  /\  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M )  /\  ran  c  C_  B )  <->  ( (
c  e.  ( A  ^m  ( 0..^ S ) )  /\  ran  c  C_  B )  /\  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M ) )
3836, 37syl6bb 276 . 2  |-  ( ph  ->  ( ( c  e.  ( A (repr `  S ) M )  /\  ran  c  C_  B )  <->  ( (
c  e.  ( A  ^m  ( 0..^ S ) )  /\  ran  c  C_  B )  /\  sum_ a  e.  ( 0..^ S ) ( c `
 a )  =  M ) ) )
3923, 31, 383bitr4d 300 1  |-  ( ph  ->  ( c  e.  ( ( A  i^i  B
) (repr `  S
) M )  <->  ( c  e.  ( A (repr `  S ) M )  /\  ran  c  C_  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   NNcn 11020   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465   sum_csu 14416  reprcrepr 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-neg 10269  df-nn 11021  df-z 11378  df-seq 12802  df-sum 14417  df-repr 30687
This theorem is referenced by:  hashreprin  30698
  Copyright terms: Public domain W3C validator